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Functional divergence at the molecular level: Robustness, 
asymmetry, and convergence 

Gavin C. Conant 

B. S., Biology, The University of New Mexico, 1998 
Ph. D., Biology, The University of New Mexico, 2004 

Abstract 

 The origin of novel structures in evolution has been of interest since Darwin proposed the 

theory of natural selection.  One important source of molecular novelty is the duplication and 

diversification of genetic material.  Here I study the association of duplication and novelty and 

find all possible combinations of the two: duplication and diversification to a new function, 

duplication without diversification, and the appearance of structures having novel functions 

without duplication.  First, in chapter 2, I report that duplicated genes in four eukaryotic genomes 

show asymmetric amino acid sequence divergence in roughly 30% of cases, an estimate 

substantially higher than a previous whole-genome study suggested.  This result is significant 

because one potential cause of asymmetric divergence is the appearance of novel features in one 

member of the duplicate pair.  In chapter 3, I consider whether duplicated genes provide 

mutational robustness in the nematode worm Caenorhabditis elegans. I find that duplicated genes 

do indeed show less severe phenotypic effects when their expression is prevented and that this 

effect is stronger for duplicates with more similar amino acid sequences or expression patterns.  

Finally, in chapter 4, I demonstrate that several recently discovered regulatory motifs in the 

transcriptional regulatory networks of the yeast Saccharomyces cerevisiae and the bacterium 

Escherichia coli are abundant due to convergent evolution and not ancestral duplications.   

Collectively, these results suggest that while duplication is one route to novel function (chapter 

2), other routes are possible (as in the case of circuit motifs) and that duplication may contribute 

to evolution in ways other than the generation of novelty, such as the buffering against loss of 

gene function.
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Evolutionary novelty, gene duplication, and convergent evolution 

 Despite the theological difficulties raised by The Origin of Species (Darwin 

1859), most scientists even in Darwin’s time found persuasive his evidence that the 

modern diversity of life was the result of descent with modification from one or a few 

original forms  (Bronowski 1973; Futuyma 1998).  However, Darwin’s theory of how 

organic evolution had occurred, namely through natural selection, gained support more 

slowly. At least one reason was the problem of the origins of novel features in evolution 

(Ruse 2003). Darwin’s argument for the gradual accumulation of small changes leading 

to structures with novel function was felt to be unpersuasive, especially because a genetic 

theory of inheritance was not in place. The difficulty was that while a fully-formed 

complex structure such as a wing conferred obvious benefits to an organism possessing it, 

it was hard to see how an incipient and incomplete form of that structure could confer any 

benefit. At a morphological level, one method of resolving this difficulty has been to 

recognize that many complex biological structures were not constructed de novo by 

natural selection but were co-opted from existing structures with other functions.  A 

classic example of this co-option is the panda’s thumb, described by Gould (1980).  

Pandas’ have evolved the ability to grasp bamboo stalks (their primary food) with a 

thumb-like structure in their paws.  However, the “thumb” in question is not the 

anatomical homolog of the human digit.  Rather, it is constructed from a modified radial 

sesamoid bone of the wrist.  In constructing the panda’s thumb, natural selection was able 

to use not just existing anatomy, but existing enzymes, developmental pathways, and 

tissues, making this “novel” structure out of mostly existing parts.  Another more recently 

discovered example is the discovery of feathers on distinctly non-avian dinosaurs (Ji et 
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al. 2001; Xu et al. 2001).  That dinosaurs which were not the direct ancestors of birds 

nonetheless possessed feathers indicates that feathers originally evolved for some other 

function (Bakker suggests warmth [1986]) and only later were co-opted for flight. 

Molecular novelty and duplication 

 The discovery of the structure of DNA (Watson & Crick 1953) naturally led to 

questions regarding the origins of novelty at the fundamental levels of genes and proteins.  

Such novelty is perhaps most usefully thought of in terms of function: the ability of an 

organism to do something its ancestors could not. Such novelty can clearly occur in the 

context of a new structure, such as an enzyme able to catalyze a new reaction. However, 

as in the case of the panda’s thumb, it is very likely that these “new” structures are 

actually modified forms of older ones. In the following pages, I will consider some of the 

possible pathways leading from existing structures to novel functions. 

Changes in the genetic material are the raw material from which novelty is built.  

Biochemically, these changes include single base pair mutations, insertion or deletion of 

stretches of DNA, and recombination between sequences.  These events can produce 

novelty in several ways.  For instance, any one of these events could change a 

transcription factor binding site and as a result alter the timing or location of a gene’s 

expression. This type of change may be responsible for many of the high-level 

morphological changes seen during the evolution of the vertebrate line.  For example, the 

vertebrate genes Hoxa-11 and Hoxa-13 show non-overlapping expression domains in 

tetrapod limbs (Fromental-Ramain et al. 1996; Haack & Gruss 1993; Nelson et al. 1996). 

However, at least in derived teleost lines (zebrafish), they show overlapping expression in 

the fins (Sordino et al. 1995).  One may hypothesize that the partitioning of where these 
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two transcription factors were expressed allowed each to target different genes in its own 

region of expression.  Such targeting, in turn, may have allowed the evolution of limbs 

such as the human arm, with distinct arm, wrist and hand bones, from the less 

differentiated ancestral fin (Chiu et al. 2000) .   

Here, I will consider another important source of genetic novelty: the duplication 

of genetic material.  An important difference between duplication and the process of 

evolution through expression change which I just discussed is that duplication avoids the 

problem of possibly losing an important existing function in order to evolve a new one.  

In the example above, molecular changes precluded retaining the ancestral fin during the 

evolution of limbs. Obviously, such a mode of evolution is only possible in cases where 

loss of the ancestral state is permissible.  In the case of gene duplication, on the other 

hand, it is possible to retain the ancestral function (in one copy of the gene, for instance) 

while at the same time allowing a second gene copy to be modified by selection.  

Haldane (1933) made early suggestions of the potential importance of gene 

duplication, a topic later considered in depth by Ohno in his book Evolution by Gene 

Duplication (1970).  The duplication of single genes was not the only type of duplication 

discussed by Ohno.  In fact, he believed that whole genome duplication 

(polyploidization) was more likely to give rise to novel functions, arguing that a single 

gene duplication would often be detrimental because of the resulting doubling of that 

gene’s expression (Ohno 1970).  Duplication in fact covers a multitude of possibilities 

from single gene duplication through regional duplication to polyploidization. One can 

even consider the possibility of the duplication of entire genetic pathways.  Consider a 

pathway consisting of two genes.  If the first gene is duplicated and that duplication 



 

 5

becomes fixed in the population due to genetic drift (see below), it is possible (although 

unlikely) that the second gene could later be independently duplicated.  On its own, this 

first duplication might not confer any benefit to the organism.  However, the advent of 

the second duplicate pair, might, by completing the duplication of the pathway, confer a 

selective benefit that would drive that duplication to fixation.  I mention this possibility 

not because it is an important process in evolution (indeed, chapter 4 below will suggest 

its rarity) but because it constitutes a hypothesis that must be considered when inferring 

the origin of a recurring pathway. 

Although duplication (from single genes up to whole genomes)  is now seen as a 

key ingredient in the generation of novelty at the molecular level (for review see Holland 

1999; Lundin 1999), duplication need not result in genes acquiring novel functions.  In 

order to understand how molecular changes (the fixing of mutations in evolutionary time) 

affect the fate of duplicate genes, it is first necessary to discuss briefly some key results 

of the theory of molecular evolution (Kimura 1983). 

Molecular evolution, the neutral theory, and selection 

 The study of molecular evolution was revolutionized by the availability of protein 

and DNA sequence data (Harris et al. 1956).  One fact these data made clear was that the 

common ancestry of biological species has left those species with genes of related 

structure and function, genes which are referred to as being homologous.  Because these 

homologous genes are not identical between species, scientists sought to explain how the 

differences had appeared.  Before the structure of the hereditary material was known, 

Fisher and Wright had derived models describing how alleles of a gene which did not 

effect an organism’s fitness would change in frequency in a population over time (Fisher 
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1930; Wright 1931).  Such alleles are referred to as neutral alleles and the evolutionary 

force that changes them over time is known as genetic drift. It was soon realized that 

many changes in the sequence of homologous genes could be described by this process of 

drift (beneficial changes in sequence may of course increase in frequency due to 

selection: there is still some debate as to the relative importance of drift versus selection 

in sequence evolution, Li 1997).   

Drift occurs because gene frequencies in a population fluctuate over time due to 

the population’s finite size. If one waits long enough these fluctuations will either result 

in the loss of a given allele from the population or in that allele replacing all other alleles 

in the population, at which point the allele is said to have been fixed.  Motoo Kimura 

rigorously described the mathematics of base-pair substitution through drift (Kimura 

1983).  His neutral theory of molecular evolution made several key points.  Among them: 

a) the rate of fixation of neutral alleles in a population is independent of population size, 

and b) mutations whose deleterious effects are slight relative to the population size 

behave effectively as neutral mutations. 

Gene duplication and molecular evolution 

 Just as with an allele of a gene, gene duplicates can appear and disappear from 

populations. It is therefore important to understand the forces that preserve duplicate 

genes and those that tend to remove them. Probably the major force eliminating 

duplicates is genetic drift.  It is possible to introduce a mutation into a duplicated gene 

that makes that copy of the gene non-functional.  Because the other copy of the gene 

maintains its function, this new null mutation does not change the fitness of the organism, 

at least to a first approximation (Li 1980; Nei & Roychoudhury 1973).  The null mutation 
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may thus drift to fixation, eliminating the duplication. It is generally believed that null 

mutations are more common than beneficial mutations, suggesting that most duplicate 

genes will be silenced before they evolve novel functions (Li 1980; Nei & Roychoudhury 

1973).   

Analyses of full genomes have shown that duplicate genes are very common in 

eukaryotes (Conant & Wagner 2002—see Appendix; Lynch & Conery 2000; Rubin et al. 

2000) and have been preserved over long periods (Bisbee et al. 1977; Ferris & Whitt 

1977; Hughes & Hughes 1993).  Because the beneficial substitutions that preserve 

duplicates under the above model of diversification or degeneration are rare, the model 

suggests that duplicate genes should themselves be rather rare. The fact that, on the 

contrary, duplicate genes are observed to be very abundant suggests that this model is 

incomplete.  The question then becomes one of identifying other forces which preserve 

duplicated genes. 

There are in fact at least three potential forces that can prevent the degeneration of 

duplicated genes. The first is a requirement to maintain high dosages of a gene: one 

example comes from the ribosomal DNA genes, where multiple copies are maintained in 

order to allow sufficient ribosome production (Li 1997).  The second possibility is that 

duplicate genes may be maintained because their redundancy protects the organism 

against detrimental mutations in either copy of the gene.  Although intuitively appealing, 

this hypothesis of redundancy for mutational robustness is somewhat problematic 

because the benefit conferred on an organism by such robustness is slight (Cooke et al. 

1997; Nowak et al. 1997; Wagner 1999; Wagner 2000c).  Nonetheless, selection can 

maintain such redundancy given large population sizes (Wagner 1999; Wagner 2000c). 
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The third and perhaps most important possibility for the preservation of duplicate genes 

is functional divergence. 

This final possibility will depend heavily on the particulars of the function of the 

gene undergoing divergence and the population in which this divergence occurs.  

Distinguishing duplicates preserved as a result of diversification from duplicates 

preserved for the other two reasons can be challenging.  One approach to making these 

distinctions is to compare the rate of synonymous and non-synonymous changes in the 

sequences in question.  Synonymous substitutions are base changes that yield another 

codon for the same amino acid—such changes do not alter the protein being coded for. 

Non-synonymous changes, on the other hand, do change the protein being coded for.  

The comparison of these two rates is a measure of the selective forces at work in the 

sequences. If drift is the dominant force in the divergence of the two sequences, then Ka, 

the number of non-synonymous substitutions per non-synonymous site, cannot exceed 

Ks, the number of synonymous substitutions per synonymous site (Li 1997).  If, however, 

natural selection is the dominant force, then Ka can exceed Ks because the selectively-

driven nonsynonymous substitutions occur more rapidly than do synonymous 

substitutions resulting from drift (Li 1997).  Despite the prevalence of duplicated genes 

and the plausibility of the hypothesis that at least some of these duplicates have diverged 

in function through natural selection, whole-genome studies have identified only a 

handful of gene pairs where Ka > Ks (Kondrashov et al. 2002; Lynch & Conery 2000).  

 The number of detected cases of directional selection in duplicates likely under-

estimates the prevalence of functional divergence for several reasons.  The 

“subfunctionalization” model of Force and coauthors (1999) describes mechanism by 
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which duplicates can diverge in function without directional selection. This model 

recognizes the importance of the fact that genes often have multiple biological roles.  

Force and collaborators argued that some duplicate genes may diverge by specializing in 

a subset of the ancestral functions.  Importantly, this type of divergence occurs neutrally 

through partial losses of function in each duplicate due to the accumulation of 

degenerative substitutions.  Lynch and Force (2000) have shown that this model 

generates duplicate preservation probabilities that are within the range seen in genomes 

studied.  A second reason for the rarity of detected directional selection is the nature of 

the estimates used to infer it.  Because Ka and Ks are averages taken over an entire gene, 

the signal from directional selection in a small region of the gene may be swamped by 

genetic drift in the rest of the sequence and selection hence undetectable using the Ka/Ks 

ratio. 

Molecular Evolution: New perspectives from novel experimental techniques 

In attempting to understand the relationship of gene duplication and novelty, we 

have the advantage of being able to draw upon many sources and types of data, most of 

them quite new.  They include full genome sequences (for example Goffeau et al. 1996; 

Wood et al. 2002), DNA microarray expression studies (Gasch et al. 2000; Spellman et 

al. 1998), whole-genome gene knock-out experiments (Giaever et al. 2002; Steinmetz et 

al. 2002; Winzeler et al. 1999) and protein-interaction compendia (such as compiled by 

Ito et al. 2001;  Uetz et al. 2000).  Such datasets can be used to assess the degree to 

which protein-protein interactions constrain the evolution of gene duplicates (Fraser et al. 

2002; Hahn et al. 2004), identify duplicate pairs where expression or interaction is 
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evolving asymmetrically (Wagner 2002), or assess the redundancy of duplicate genes (Gu 

et al. 2003; Wagner 2000b).  

Of course each of these experimental protocols has its own limitations.  Full 

genomic DNA sequences are highly accurate: the genomics company Celera estimates 

that the sequence error rate (as opposed to assembly errors) in their human genome 

sequence is less than 0.1% (Venter et al. 2001),  but it is well-known that raw sequence 

difference is an imperfect measure of functional divergence. For instance, the proteolytic 

enzyme trypsin, which cleaves proteins after lysine or arginine residues, can be converted 

to the substrate specificity of chymotrypsin (which cleaves after large hydrophobic 

residues) by a single amino acid change (Hedstrom et al. 1994).  On the other hand, many 

of the active sites of prokaryotic DNA polymerase I can be mutated without detectable 

effect on the activity of the enzyme (Patel & Loeb 2000).  Thus, one must be careful not 

to overstate the importance of raw sequence differences in determining functional 

differences.  mRNA expression assays from microarrays, on the other hand, tend to 

produce data points with large error bounds even under ideal conditions (Brown et al. 

2001; Schuchhardt et al. 2000).  Similarly, the errors associated with some protein-

protein interaction data are amply demonstrated by the fact that two analyses using 

similar experimental protocols yielded protein interaction networks that overlapped by 

only about 20% (Ito et al. 2001).  

Significant as these limitations are, these types of data offer even greater 

advantages in studying duplication and divergence.  The first advantage is the ability to 

consider duplication on the level of the whole genome, which prevents any possible 

biases in the selection of gene families for analysis.  Secondly, expression and protein 
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interaction data are  indicators of functional divergence which are comparatively 

independent of sequence metrics (see figure 10 and Wagner 2001) and are appropriate for 

trying to determine the prevalence of functional divergence.  And finally, the ability to 

individually eliminate the expression of each gene in the genome is a powerful tool for 

studying functional redundancy in duplicate genes (see chapter 3). 

Overview 

Incorporating the above types of data and recalling the various possible fates of 

duplicated genetic material, I have studied the relationship between duplication and the 

appearance of functional novelty.  My three studies provide evidence for all possible 

combinations of duplication and divergence.  First, in chapter 2,  I will focus on detecting 

asymmetric divergence of amino acid sequence in duplicate genes. Such asymmetries can 

arise for a number of reasons, including directional selection and the subfunctionalization 

process proposed by Force and coauthors (1999).  As a result, asymmetries are at least a 

potential indicator of functional divergence.  In that chapter, I thus describe evidence for 

the divergence of duplicate genes: in other words duplication with diversification. In the 

next chapter (3), I examine the degree of functional overlap remaining in the duplicates 

of Caenorhabditis elegans.  Functional overlap in duplicate genes is an important 

alternative hypothesis when studying functional divergence and constitutes an example of 

duplication without diversification. This functional overlap is also interesting in and of 

itself, as it helps researchers understand why organisms show robustness to changes both 

in their environments and in their own genetic material. Finally, in chapter 4, I present a 

study of a somewhat different sort where I consider the question of duplication in higher-

level genomic structures, namely motifs in the transcriptional regulatory networks of the 
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yeast Saccharomyces cerevisiae and the bacterium Escherichia coli.  These circuit motifs 

are very common in the two networks, raising the question of whether they too evolved 

through duplication or whether they rather evolved convergently due to desirable 

properties.  I show that these circuits do not appear to have arisen via duplication. They 

thus provide a case of diversification without duplication. Taken collectively, the three 

problems studied here demonstrate the contingent nature of (molecular) evolution and the 

often ad hoc way in which existing structures are adapted to new needs.
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Chapter 2: Asymmetric Sequence Divergence of Duplicated 

Genes 

 

This chapter has previously appeared in substantially the same form as: Conant, G. C. 
and Wagner, A. (2003) “Asymmetric sequence divergence of duplicate genes, 
Genome Research, 13(9): 2052-2058.  Copyright of the chapter is therefore 
retained by the Cold Spring Harbor Press (2003), and it is used here with 
permission. 
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Abstract 

Much like humans, gene duplicates may be created equal, but they do not stay that way 

for long. We here show for four completely sequenced genomes that 20-30% of duplicate 

gene pairs show asymmetric evolution in the amino acid sequence of their protein 

products. That is, one of the duplicates evolves much faster than the other. The greater 

this asymmetry, the greater the ratio Ka/Ks of amino acid substitutions (Ka) to silent 

substitutions (Ks) in a gene pair.  This indicates that most asymmetric divergence may be 

caused by relaxed selective constraints on one of the duplicates. However, we also find 

some candidate duplicates where positive (directional) selection of beneficial mutations 

(Ka/Ks>1) may play a role in asymmetric divergence. Our analysis rests on a codon-based 

model of molecular evolution that allows a test for asymmetric divergence in Ka. The 

method is also more sensitive in detecting positive selection (Ka/Ks >1) than models 

relying only on pairwise gene comparisons.    

Introduction 

Much work on the evolution of gene duplication since Ohno (1970) has focused on how 

gene duplicates diverge both in sequence and function.  Although most substitutions in a 

duplicate are selectively neutral immediately after duplication (Li 1980; Nei & 

Roychoudhury 1973), this period of neutrality may be ended by a variety of events: 

nucleotide substitutions that affect protein expression, localization, or dimerization 

(Force et al. 1999; Gibson & Spring 1998) can lead to increasing functional and sequence 

divergence of gene duplicates and thus to increased selective constraints on both genes.  

Functional divergence often occurs rapidly, although this is not always the case.  For 
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instance Langkjær et. al. have  presented evidence suggesting that genes dating from an 

ancient whole-genome duplication in the yeast S. cerevisiae may not have diversified 

until well after the duplication event (Langkjær et al. 2003). 

Mounting evidence indicates that gene duplicates can assume unequal roles in 

divergence. A study by one of us suggests that gene function, as indicated by protein 

interactions and gene expression patterns, diverges asymmetrically for many gene 

duplicates in the yeast Saccharomyces cerevisiae (Wagner 2002).  Other pertinent 

evidence comes from sequence divergence. Some of this evidence is based on detailed 

studies of individual genes. For example, Li and Tsoi found that mammalian lactate 

dehydrogenase C evolved more rapidly than lactate dehydrogenase A (Li & Tsoi 2002). 

A large-scale study by Kondrashov and collaborators (Kondrashov et al. 2002) analyzed 

39 genomes from eubacteria, archaea and eukaryotes and found a small number of cases 

of asymmetric divergence among 101 analyzed duplicate gene pairs. In contrast to this 

study, where the incidence of asymmetric divergence was less than 5 percent, Van de 

Peer and collaborators (Van de Peer et al. 2001) found that fully half of 26 duplicate gene 

pairs in zebrafish showed evidence of asymmetric divergence.   Using a more sensitive 

amino-acid based method to detect asymmetry, Dermitzakis and Clark found that roughly 

50% of 12 mammalian transcription factor paralogs showed evidence of asymmetric 

evolution (Dermitzakis & Clark 2001).  The functional significance of such asymmetric 

divergence is still unclear, although some existing evolutionary models might contribute 

to an explanation. For example, it has been argued that some form of evolutionary 

asymmetry is required for functional diversification of duplicates (Krakauer & Nowak 

1999), and that asymmetric functional divergence might reflect selection for mutational 
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robustness (Wagner 2002).  However, before one can seriously pursue evolutionary 

models explaining asymmetry, it is necessary to establish its incidence, because existing 

work has not yielded a final picture.  

Previous work on asymmetric sequence divergence relies on relative rate tests 

between two duplicates and an outgroup gene, using either nucleotide or amino acid 

substitutions (Kondrashov et al. 2002; Li & Tsoi 2002; Van de Peer et al. 2001). 

Nucleotide-based tests cannot distinguish between silent substitutions and amino acid 

replacement substitutions.  The presence of (often neutral) silent substitutions may 

obscure any signal of asymmetry, which mostly derives from replacement substitutions.  

Amino acid-based models, on the other hand, have problems with correctly determining 

outgroup genes, which is necessary to calibrate divergence estimates. Specifically, if two 

duplicates have diverged asymmetrically, one of the duplicates may have become more 

divergent than a true outgroup gene.  For this reason, amino acid based methods also tend 

to underestimate the number of gene pairs with asymmetric divergence. These 

shortcomings prompted us to use a codon-based model of evolution that distinguishes 

between silent substitutions and amino acid-changing substitutions when testing for 

asymmetric protein sequence divergence.   

Codon-based models of sequence evolution can address questions in both 

phylogenetics and molecular evolution (for discussion, see Lewis 2001; Liò & Goldman 

1998).  Such models estimate both synonymous divergence (Ks) and nonsynonymous 

divergence (Ka) between genes.  For the purpose of the present study, we use the model 

of Muse and Gaut (1994)  (A very similar model is described by Goldman & Yang 1994).   

This model allows each branch of a phylogenetic tree to have its own value of Ks and Ka.  
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To study asymmetric divergence, we apply the model to gene duplicates from the fully 

sequenced genomes of the yeasts Saccharomyces cerevisiae (Goffeau et al. 1996) and 

Schizosaccharomyces pombe (Wood et al. 2002), the nematode worm Caenorhabditis 

elegans (The C. elegans Sequencing Consortium 1998), and the fruit fly D. melanogaster 

(Adams et al. 2000).  

Methods 

Model of sequence evolution   

Following Muse and Gaut (1994) we have applied a codon model to three-taxa trees 

containing two duplicate genes and an outgroup gene. The model allows both the length 

of the tree branches (t) and Ka/Ks to differ on each of the three branches (see figure 1).  

This allows for the possibility that duplicate genes evolve independently of each other.   

We tested for statistically significant differences in the rate of evolution between 

gene duplicates by constraining the duplicates’ rate of amino acid divergence to be equal 

(Ka1=Ka2) (see figure 1).  By comparing the likelihood (Felsenstein 1981) of observing 

Outgroup Gene 

Duplicate 1 Duplicate 2 

Length=Ks2, Ka2, Ka2/Ks2=ω2 Length=Ks1, Ka1, Ka1/Ks1=ω1 

 

Figure 1:  Schematic representation of our model tree.  Two duplicates are presumed to have 
diverged from an outgroup gene.  Each of the three branches of this tree is allowed to have its own Ks 
and Ka values. 
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the data under the constraint of symmetry to the likelihood of the unconstrained model, 

we could evaluate whether the degree of asymmetric divergence was statistically 

significant (the random nature of molecular evolution means that even two symmetrically 

evolving sequences will almost never show exactly identical divergence values). If the 

two likelihoods are very similar, that argues that any asymmetry present in the sequences 

is due only to stochastic effects and that the symmetrical hypothesis is reasonable. Larger 

differences in likelihood indicate that the sequences are unlikely to have evolved 

symmetrically.  To judge the significance of the likelihood differences, we used a 

likelihood ratio test.  This test compares twice the log of the ratio of the likelihoods 

between the two models (the likelihood ratio statistic) to a chi-square distribution with 1 

degree of freedom (Goldman 1993).  The chi-square distribution is known to be the 

distribution of this statistic at the limit of infinite data (Sokal & Rohlf 1995). 

To ascertain the validity of the chi-square distribution for our data, we applied 

parametric bootstrapping (Hillis et al. 1996) to one asymmetrically diverged gene pair 

from each of the four genomes we studied.  Specifically, for each of these four gene 

triplets, we simulated the evolution of 100 gene triplets using the maximum likelihood 

parameter estimates from our example triplet under the assumption that Ka1=Ka2 (that is, 

assuming symmetric divergence).  For each of these 100 simulated triplets we then 

obtained maximum likelihood estimates of Ka and Ks under both the unconstrained model 

and the latter model where Ka1=Ka2.  The result of this procedure was a distribution of 

log-likelihood ratios that could be compared to a chi-squared distribution.  For all four 

sets of simulations a chi-square goodness-of-fit test indicated that the distribution of 

likelihood differences is consistent with a chi-square distribution (results not shown).  
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Computational limitations prohibited taking a similar approach as our primary 

significance test. 

Selection of gene duplicates 

At first sight, it might seem most sensible to choose outgroup genes from a separate 

genome.  However, this approach faces two serious obstacles:  1) currently available 

outgroup genomes are evolutionarily distant, showing saturation in synonymous sites for 

many genes; 2) it is often impossible to differentiate recent gene duplications in the test 

genome from the loss of ancient duplicates in the outgroup genome.  In a recent paper, 

Kondrashov and collaborators (2002) attempted to avoid this problem by analyzing 

duplicates which were closer to each other in amino acid sequence than either was to the 

outgroup. This conservative approach can potentially lead to underestimation of the 

number of asymmetrically diverged gene pairs because some asymmetric pairs may 

violate this requirement.    

For these reasons, we pursued a within-genome approach in our four genomes 

(the baker’s yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces 

pombe, the nematode worm Caenorhabditis elegans, and the fruit fly Drosophila 

melanogaster).  We identified triplets of genes closest to each other in synonymous 

divergence, Ks, using our whole genome analysis tool (Conant & Wagner 2002, 

reproduced here as the appendix). We considered the two closet members of the triplet 

(in terms of Ks) to be the duplicates, while the third gene constituted the outgroup. When 

faced with multiple outgroup choices (in gene families of more than three genes), we 

chose the closest outgroup gene, because outgroups with shorter branch lengths yield 

more trustworthy divergence estimates (Muse & Weir 1992).    
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We excluded gene triplets where (i) the outgroup gene showed less than 40% 

amino acid identity to the other two genes, (ii) any genes differed in length by more than 

20%, (iii) members of a triplet were alternatively spliced version of the same gene, and 

(iv) member genes showed saturation in synonymous divergence (Ks).  We determined 

saturation in Ks with a heuristic test: saturation was inferred if there was no decrease in 

the likelihood of observing the sequence data when the divergence (Ks value) for the 

sequence was increased beyond the maximum likelihood estimate (Hahn et al. 2004).   

The complex phylogenies of large gene families make determining duplication 

orders difficult, leading us to exclude gene families of 9 or more members from analysis.    

Assessment of asymmetry in duplicates 

We aligned triplets using Clustalw (Thompson et al. 1994), removed gap characters, and 

calculated the likelihood of observing these alignments under two evolutionary models: 

(i) an unconstrained model (distinct Ka and Ks values); (ii) a model where the duplicates 

were constrained to have Ka1=Ka2.  Nucleotide frequencies were estimated from the 

sequence alignments.  Cases where pairwise Ks estimates had incorrectly identified the 

outgroup were corrected manually (5 triplets in fruit fly and 7 triplets in worm).  We also 

excluded from analysis triplets with highly diverged outgroups (Kso>4 or Kao>1), because 

longer outgroup branches decrease sensitivity to asymmetries. To obtain maximum 

likelihood estimates, branch lengths were optimized by the method of Yang (2000) for 

the unconstrained model; all other parameters and all parameters in the constrained model 

were estimated using Powell’s routine (Press et al. 1992).  In the remaining gene triplets, 

a likelihood ratio statistic greater than 3.85 (chi-squared P≤0.05) between the two models 

indicated asymmetrical amino acid divergence.  Analysis of all identified asymmetric 
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pairs (P≤0.05) with a model that allowed each codon position to have its own nucleotide 

frequencies did not affect our conclusions (results not shown).  

Significance of observed patterns of asymmetry 

Using a P=0.05 significance cutoff for repeated statistical tests can lead to elevated type I 

errors (false positives).  Although this problem can be avoided with a Bonferroni 

correction (Sokal & Rohlf 1995: adjusts the P-value of individual tests to give a desired 

“family” error rate), such corrections reduce the power of individual tests.  For our 

purposes, it is less important to minimize false positives than to discover whether the  

number of apparently asymmetrically diverged genes in a genome can be explained by 

chance.  We therefore took a different approach to assess false positives.  With a 

significance cutoff of P=0.05, we would expect 5% of the individual triplet tests to 

falsely reject the null-hypothesis of symmetric divergence.  We used a binomial 

distribution with parameter p=0.05 to ask: “How likely would it be to observe the actual 

number of asymmetric triplets due solely to false positives?”  

Functional distribution of asymmetric pairs 

We used public databases for annotations: the Saccharomyces Genome Database (baker’s 

yeast: Cherry et al. 1998), the S. pombe genome sequence (fission yeast: Wood et al. 

2002), Flybase (fruit fly: The FlyBase Consortium 2002), and WormBase (nematode: 

Stein et al. 2001).   

Analysis of expression profiles 

Using microarray expression data from baker’s yeast (Gasch et al. 2000) and worm (Kim 

et al. 2001), we asked whether there was a statistical association between sequence 
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asymmetry and a) expression divergence and b) asymmetry of expression divergence.   In 

the baker’s yeast data (time-series data for 11 experimental conditions), we used log2-

transformed ratios of fluorescence intensities at previously described time-points where 

(on average) maximal induction or repression was seen (see Wagner 2002).  For worm, 

we again used log2-transformed ratios, accepting only gene pairs where at least 100 

matching microarray data points were available.  Data were normalized by the number of 

experiments per pair.  For both organisms, we treated as constant all data points with less 

than 2-fold expression change.  Requiring 4-fold expression change excluded too many 

data points in yeast to permit analysis but gave similar results in the worm (not shown).  

To avoid microarray cross-reactivity between recent duplicates, we excluded pairs with 

Ks1+Ks2<0.1.   

To answer part (a) of the above question, we calculated the absolute value of the 

difference in transformed ratios between our duplicate pair, summed over all conditions.  

We compared this net expression deviation to the normalized absolute difference in 

amino acid divergence Ka between the duplicates, given by 

21

21

aa

aa

KK

KK

+
−

     (1)  

For part (b), we counted the number of experimental conditions where a gene was 

over- or under expressed by at least 2-fold, a crude indicator of the number of conditions 

under which each duplicate has a significant change in expression.  If expression patterns 

have diverged asymmetrically, one gene will show expression change in a significantly 

greater number of conditions that the other (Wagner 2002). We compared the difference 

in the number of changed conditions to the normalized difference in Ka (equation 1).  
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Asymmetric divergence and selective constraints 

To determine whether asymmetry in amino acid divergence, Ka, was correlated with 

relaxed selective constraints, we calculated the correlation between the absolute value of 

the normalized difference in Ka, (equation 1), and the absolute value of the normalized 

difference in selective constraint, measured by:  
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Fission yeast was excluded from this analysis because of its small sample size. 

Cases of positive selection (Ka/Ks > 1.0) 

We tested whether observed values of Ka/Ks > 1.0 were significantly different from one 

with another likelihood ratio test.  Here the constrained model has Kai/Ksi=1 if duplicate i 

has  Kai/Ksi>1 (i=1,2). As above, we used a chi-square distribution with 1 degree of 

freedom to test the significance of the observed difference in likelihood.  We compared 

the triplet-based method of identifying cases of Ka/Ks > 1.0 to conventional pairwise 

methods, calculating pairwise significances also using a likelihood ratio test of Ka/Ks 

>1.0. 

Results 

Figure 2 shows a simple measure of asymmetric divergence: the absolute difference |Ka1-

Ka2| of the number of amino acid replacement substitutions per site for each gene pair 

analyzed, plotted against that pair’s statistical significance P (as –log10 P).  As described 

in the methods, we tested the hypothesis that the number of pairs with asymmetric Ka 

(2) 
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values could be explained by the 5% error rate of our individual hypothesis tests.  For all 

four genomes, we must reject this null hypothesis (baker’s yeast: P=7x10-5, fission yeast:  

P=0.0042, fruit fly: P=2x10-8, worm: P=6x10-15).  Clearly, many gene pairs diverge 

asymmetrically. A full list of the identified asymmetric pairs is available from our 

website (http://www.unm.edu/~compbio/Supplemental_Data/Sequence_Asymm/). Below 

we discuss, species by species, the number of asymmetric pairs and highlight a few 

examples.  

Saccharomyces cerevisiae. In baker’s yeast we identified 22 gene triplets with 

unsaturated Ks, six of which (27%) showed asymmetry in Ka. An example is the gene 

pair encoding the alcohol dehydrogenase enzymes ADH3 and ADH1.  ADH3 showed an 

amino acid divergence Ka nearly twice that for ADH1 (Ka1=0.101, Ka2=0.056, P=0.008).  

Interestingly, ADH3 is localized in the mitochondrial matrix (Pilgrim & Young 1987), 
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Figure 2:  Significance of observed differences in Ka.  On the x-axis is plotted the absolute value of 
the difference in Ka value between two duplicates.  The y-axis gives the negative logarithm (to base 
10) of the P value for that pair.   A) All asymmetric duplicate pairs shown.  B) Only the square region 
marked in panel A is shown. The dashed line in B shows the significance level of P=0.05. 
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whereas ADH1 is found in the cytosol (Fraenkel 1982).   The alcohol dehydrogenase 

genes ADH5 and ADH2 also showed asymmetric divergence, but their subcellular 

localization is unknown.  In addition to the alcohol dehydrogenases, the acid 

phosphatases PHO3 and PHO5, as well as the pyruvate decarboxylases PDC1 and PDC5 

showed asymmetric divergence.  

Schizosaccharomyces pombe.  In fission yeast, we identified 14 unsaturated 

triplets, 3 (21%) of which showed asymmetry in Ka. One especially clear-cut case of 

asymmetry regards the putative aminotransferase genes 19076066 and 19111920.  Here, 

the outgroup (gene 19114182) is very distant from the duplicates (unsaturated Kso of 

3.338), making it especially unlikely that the observed asymmetry is a result of incorrect 

outgroup selection. Asymmetry in Ka is highly significant for these two gene pairs, with 

Ka2 nearly 80% greater than Ka1 (Ka1=0.101, Ka2=0.181, P=0.003).  The other asymmetric 

pairs were putative lysophospholipases and the retrotransposons Tf2-11 and Tf2-12. 

Drosophila melanogaster. We identified a total of 44 unsaturated triplets in the 

fruit fly, of which 13 (30%) showed evidence of asymmetric divergence. Among the 

asymmetrically diverged gene pairs with known function are the heat shock proteins Hsp-

70Aa and Hsp-70-3, the beta tubulins 60D and 56D, as well as cytochrome P450 genes  

Cyp313a1 and Cyp313a2. The genes in the beta tubulin triplet all have different tissue-

specific expression.  β-tubulin 56D is the predominant isoform, while β-tubulin 60D is 

expressed in various larval, pupal, and adult cells (Hoyle & Raff 1990; Kimbel et al. 

1989). The outgroup for these two genes, β-tubulin 85D, is an isoform specific to the 

male germ line (Fackenthal et al. 1995; Fackenthal et al. 1993).  
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An extreme example of asymmetric divergence in the fruit fly regards the LysB 

and LysE genes (outgroup LysD).  The two genes show similar Ks values (Ks1=0.054, 

Ks2=0.057), but distinct Ka values (Ka1=0, Ka2=0.013).  All three genes belong to the 

lysozyme D gene family.  This gene family is expressed in the larval midgut (Daffre et al. 

1994; Kylsten et al. 1992) and its members have chitinase activity (Regel et al. 1998), an 

interesting parallel to the asymmetrically diverged chitinase genes of C. elegans (see 

below).  
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Figure 3:  Correlation of the normalized difference in Ka between two duplicates and the difference in the 
selective constraint for those two duplicates. The variables on the axes labels are   

( ) ( )2121 aaaaa KKKKK +−=∆  and ( ) ( )22112211 sasasasasa KKKKKKKKKK +−=∆ , respectively.  

A) S. cerevisiae.  B) D. melanogaster.  C) C. elegans. 



 

 27

Caenorhabditis 

elegans.   We found 164 

unsaturated triplets in the 

worm genome, 46 (28%) of 

which show asymmetric 

divergence. Six of the 

asymmetric pairs contain 7-

helix transmembrane 

chemoreceptor domains.  

This nematode uses chemical 

signals to locate food 

(Delattre & Félix 2001), 

attract mates (Simon & 

Sternberg 2002) and initiate the social feeding response (de Bono et al. 2002), and the 

divergence of such pairs may increase the specificity of responses to these signals.  

Like their fruit fly counterparts, two pairs of worm cytochrome P450 genes 

evolved asymmetrically.  Cytochrome P450 is involved in detoxifying xenobiotics 

(Mathews & Van Holde 1996) and some worm family members have been shown to be 

xenobiotically inducible (Menzel et al. 2001).  The asymmetric evolution of these genes 

may be related to challenges from environmental toxins.  

Two further functional families with asymmetric pairs contain proteins with F-box 

domains and chitinases.  Chitin is present in some nematodes’ prey and in their own eggs 

(Muzzarelli & Muzzarelli 1998), suggesting the need for specialized chitinase enzymes. 
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Figure 4:  Number of cases where at least one duplicate in a pair 
has Ka/Ks >1.0 for the four organisms shown using our triplet 
method (black), and using the conventional pairwise estimation 
(grey). The total number of duplicates pairs for which we 
determined Ka/Ks in this analysis was 22 for S. cerevisiae, 14 for 
S. pombe, 44 for D. melanogaster and 164 for C. elegans. 
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Asymmetric amino acid divergence and gene expression profiles 

 We tested the hypothesis that asymmetric amino acid divergence is coupled to 

greater gene expression divergence in one of two duplicate genes.  To do so, we used data 

from mRNA microarray experiments in yeast (Gasch et al. 2000) and nematodes (Kim et 

al. 2001).  We found no significant correlation between degree of asymmetry in Ka and 

divergence in expression level. (Baker’s yeast: Pearson’s r: -0.28, P=0.33, Spearman’s s: 

-0.17, P=0.56; n= 14; worm: Pearson’s r: -0.01, P=0.90, Spearman’s s: -0.04, P=0.69, 

n=119).  We also calculated the statistical association between asymmetry in expression 

level (see Wagner 2002) and asymmetry in Ka.  Once again we found no significant 

association (Baker’s yeast: Pearson’s r: 0.03, P=0.91, Spearman’s s: 0.08, P=0.77; n= 14; 

worm: Pearson’s r:-0.04, P=0.64, Spearman’s s:-0.10, P=0.30, n=119). 

Asymmetry and strength of selection 

We examined the statistical association between asymmetry in amino acid divergence 

and evolutionary constraints on duplicate pairs, as indicated by Ka/Ks (see Methods).   

We excluded fission yeast from this analysis because of its small number of informative 

gene triplets.   To avoid artifacts resulting from codon usage bias in baker’s yeast, we 

excluded gene pairs where either gene had a codon bias index (Bennetzen & Hall 1982) 

value greater than 0.5.  In baker’s yeast (figure 3a) we observed a weakly significant 

correlation between the asymmetric amino acid divergence and selective constraint 

(Pearson’s r=0.73, P=0.005, Spearman’s s=0.56, P=0.046, n=13).  The larger samples 

from fruit fly (figure 3b) and worm (figure 3c) both yield highly significant correlations 

(fruit fly: Pearson’s r=0.64, Spearman’s s=0.52, n=43, worm: Pearson’s r=0.58, 

Spearman’s s=0.39, n=161, P<0.001 for all). 
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Positive selection in duplicate genes 

The triplet-based method of analysis permits estimation of the Ka/Ks ratio for each gene 

in a duplicate pair separately.  As Figure 4 makes clear, such separate estimation 

produces many more candidate cases of Ka/Ks >1.0 than does conventional pairwise 

analysis.  None of the pairwise cases of Ka/Ks >1 are statistically significant at P≤0.05.  

In the triplet data, we found one significant case of positive selection out of 22 gene 

duplicates with Ka/Ks>1.0: the worm gene Y56A3A.10 (duplicate partner: Y56A3A.14, 

outgroup: Y56A3A.15, P=0.029).  This gene pair also shows significant asymmetry in Ka 

divergence (P=0.009), consistent with the notion that one of the genes underwent 

directional selection.  Functional information about these genes is limited, except that all 

three genes contain an F-box domain which is involved in ubiquitin-mediated protein 

degradation and spermatogenesis (Kipreos & Pagano 2000). 

Discussion 

Asymmetries in rates of amino acid divergence are common in our four test genomes. 

Sample sizes are small in some genomes (e.g., 14 gene pairs for fission yeast), but taken 

together, our results suggest that a genome contains at least 20% of gene duplicates that 

diverge asymmetrically.  The largest samples come from the worm and fruit fly genomes, 

where between 28% and 30% of gene pairs showed asymmetric divergence. Our estimate 

lies in between that of Van de Peer and collaborators (Van de Peer et al. 2001) for DNA 

sequence divergence in vertebrate duplicates (50%), and that of another systematic study 

using various completely sequenced genomes (<5%) (Kondrashov et al. 2002). 

Differences in approach may be responsible for these discrepancies.  For example, 

Kondrashov and collaborators required that two duplicates be closer in amino acid 
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sequence to each other than to the outgroup. This is a sensible assumption, but it leads to 

an underestimate of the number of asymmetrically diverged genes, because if asymmetric 

divergence occurs, one of the duplicates may have become more divergent than the 

outgroup gene.   In addition, amino acid models (such as that used by Kondrashov et. al.) 

do not directly consider the structure of the genetic code in their estimates.  Such models 

may thus underestimate divergence, since the codons for some amino acids are separated 

by multiple nonsynonymous nucleotide substitutions in the genetic code (Ota & Nei 

1994).  We circumvent these potential biases by using a codon model and requiring that 

the synonymous divergence of duplicates must be lower than that of the outgroup.  

 Caveats.  The biggest caveat to our approach is that it requires gene triplets that 

meet several stringent criteria (see methods). It will thus yield only a moderate number of 

informative gene pairs. We also note that our approach may still occasionally miss 

asymmetrically diverged duplicates, especially if outgroup branches are long, or if the 

genes in question are short. In that case, the number of asymmetrically diverging genes 

would be higher than observed. 

Asymmetry in sequence divergence and functional divergence.  Is asymmetric 

divergence in sequence coupled to asymmetric divergence in gene function? Do rapidly 

evolving duplicates acquire new functions more often than slowly evolving duplicates? 

These obvious questions are very difficult to answer systematically. First, many 

asymmetrically diverging gene pairs have completely unknown function.  Second, 

reliable indirect indicators of gene function, such as gene expression patterns, are 

available for many genes only in a select few organisms. Among our four organisms,  
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baker’s yeast and the nematode contain the information necessary to address such 

questions.  

Indirect indicators of yeast gene function include gene expression (for examples 

see (Gasch et al. 2000; Spellman et al. 1998), subcellular localization (Kumar et al. 

2002), protein interactions (Ito et al. 2001; Uetz et al. 2000), and the effects of synthetic 

null (“knock-out”) mutations on the expression of other genes (Hughes et al. 2000b).  

Such information is available for anywhere from a few hundred genes in the case of gene 

knock-out effects on gene expression (Hughes et al. 2000b), to almost all genes in the 

case of gene expression data.  Asymmetric divergence of gene duplicates has previously 

been detected in baker’s yeast for several of these indicators of gene function (Wagner 

2002).   In worm, less functional data are available, but both large microarray 

experiments (Kim et al. 2001) and whole-genome RNAi knock-down experiments 

(Kamath et al. 2003) have been performed.  Is such functional asymmetry correlated with 

sequence asymmetry?  For expression data, the answer appears to be no.  Asymmetric 

gene expression divergence is driven by the differential evolution of regulatory regions, 

not coding sequences. Because the evolution of coding sequences is only weakly coupled 

with that of gene expression  (Wagner 2000a), it is unsurprising that gene expression 

divergence is uncoupled to asymmetric sequence divergence.  We can currently not 

answer whether other indicators of functional divergence are more closely coupled to 

asymmetric sequence divergence in baker’s yeast because of our small number of 

asymmetric triplets. 

Why asymmetric sequence divergence? Two principal forces can drive the 

asymmetric divergence of genes: relaxed selective constraints and directional selection. 
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In the first case, sequence divergence is neutral, i.e., it does not involve positive selection 

of advantageous mutations on the more rapidly evolving gene. In the second case, 

divergence follows a selectionist scenario, where advantageous mutations play prominent 

role. The answer to the above question would contribute important evidence to the 

neutralist-selectionist debate (Li 1997).   

For baker’s yeast, fruit fly, and worm there is clear evidence for relaxed selective 

constraints in asymmetrically diverged genes. That is, the more asymmetrically two 

genes diverge, the greater is the difference in the ratio of amino acid replacement to 

synonymous substitutions (Ka/Ks) between them. (Fig. 3).  Such differences in constraints 

can arise if two duplicates come to be expressed in different cell compartments or tissues,  

encountering different interaction partners and chemical milieus.  The asymmetrically 

diverged baker’s yeast genes ADH1 (cytosolic) and ADH3 (mitochondrial) (Fraenkel 

1982; Pilgrim & Young 1987) and the β-tubulins in fruit fly constitute examples of this 

phenomenon. 

We also detected several candidate gene pairs where positive selection may have 

taken place.  Positive selection is indicated when the rate of nonsynonymous substitutions 

(Ka) exceeds the rate of synonymous substitutions (Ks) (Ka/Ks>1, Li 1997).  Because the 

current model does not assume gene duplicates evolve symmetrically, it can look for 

cases of Ka/Ks >1.0 in individual genes, potentially improving sensitivity in detecting 

positive selection over pairwise methods.  This is born out by the data in Figure 4, which 

shows that the triplet-based method detects many more genes with Ka/Ks>1.0.  However, 

only one among them has Ka/Ks significantly greater than one. This is an (asymmetric) 

worm gene pair containing an F-box domain which may be involved in spermatogenesis 
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(Kipreos & Pagano 2000). We note that positive selection has been shown in the male 

reproductive genes of other organisms (Nurminsky et al. 1998; Wyckoff et al. 2000).    

At first sight, the above analysis suggests that neutral relaxation of selective 

constraints may be largely responsible for asymmetric divergence. However, this 

conclusion would be premature.  Ka/Ks as an indicator of positive selection averages 

across all nucleotides in a gene and through time since divergence, but positive selection 

often acts only on a small fraction of key nucleotides over a short period. To detect 

positive selection with Ka/Ks requires that selection have been both strong and recent.  

Thus, although positive selection is pervasive (Fay et al. 2002; Hughes et al. 2000a; 

Hughes & Hughes 1993; Smith & Eyre-Walker 2002), the ratio Ka/Ks can usually be used 

to demonstrate positive selection only in conjunction with phylogenetic and functional 

information, or with information on amino acid polymorphisms (Tsaur et al. 1998; Zhang 

et al. 1998). This means that many of our gene duplicates that show relaxed selective 

constraint may actually have experienced positive selection which cannot be detected 

using sequence information alone.  Again, functional genomic and phylogenetic data are 

necessary to arrive at a firm conclusion. What will this final conclusion be?  If three 

decades worth of molecular evolution studies are any guide, asymmetric divergence will 

be due to neutral divergence for some genes, and due to positive selection for others.  
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Chapter 3: Duplicate genes and robustness to transient gene 

knockouts in Caenorhabditis elegans 

 

This chapter has previously appeared in substantially the same form as: Conant, G. C. 
and Wagner, A. (2004)  “Duplicate genes and robustness to transient gene 
knockouts in Caenorhabditis elegans, Proceedings of the Royal Society, 
Biological Sciences,  271(1534): 89-96.  Copyright of the chapter is therefore 
retained by the Royal Society, and it is used here with permission. 
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Abstract: 

We examine robustness to mutations in the nematode worm Caenorhabditis elegans and 

the role of single copy and duplicate genes in it. We do so by integrating complete 

genome sequence and microarray gene expression data with results from a genome-scale 

study using RNA interference (RNAi) to temporarily eliminate the functions of more than 

18,000 worm genes.  89% of single copy and 96% of duplicate genes show no detectable 

phenotypic effect in an RNAi knock-down experiment. We find that mutational 

robustness is greatest for closely related gene duplicates, large gene families, and 

similarly expressed genes. We discuss the different causes of mutational robustness in 

single copy and duplicate genes, as well as its evolutionary origin. 

Introduction 

Genes whose loss of function has no detectable effect number in the thousands in 

a typical eukaryotic genome (Kamath et al. 2003; Steinmetz et al. 2002; Winzeler et al. 

1999). Duplicate genes comprise at least one third of eukaryotic genomes (Li et al. 2001; 

Rubin et al. 2000), a fact that might explain this observation, because duplicate genes 

often have similar function.  Losing one duplicate gene can thus be tolerated because 

others can buffer the organism against this loss. This candidate explanation for many 

genes without phenotypic effects is appealing but also inadequate. A systematic analysis 

of the effects of knock-out mutations in the yeast Saccharomyces cerevisiae, a single-

celled eukaryote, showed that much robustness against null mutations is caused by 

single-copy genes (Wagner 2000b). This analysis, based on over 250 synthetic null 

(gene-knockout) mutations, found that more than 40% of mutations with no phenotypic 
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effect occurred in single copy genes. It also showed little support for the role of gene 

duplications in robustness, a result due to the limited amount of gene-knockout data 

available at the time. A more recent study (Gu et al. 2003), based on more than 5700 

synthetic null mutations in yeast, showed that gene duplications have an important role in 

mutational robustness. However, this later study also underscored the importance of 

single copy genes in conferring robustness. Between 41% and 77% of non-detectable 

mutational effects were due to single-copy genes: a number higher even than that found 

in the more limited study. 

 Whether single copy or duplicate genes are primarily responsible for mutational 

robustness has implications for the mechanisms providing robustness. The question itself, 

however, has thus far only been asked in the unicellular eukaryote yeast.  Multicellular 

organisms might yield different answers, both because they contain more duplicate genes 

which form larger families (Qian et al. 2001; Conant & Wagner, 2002—reproduced here 

as an appendix; Rubin et al. 2000), and because developmental processes that arose with 

multicellular life may rely on different mechanisms to buffer the effect of null mutations. 

A recent genome-wide analysis that transiently eliminated the function of more than 

16,000 C. elegans genes through RNA interference (RNAi, Fire et al. 1998; Kamath et 

al. 2003) allowed us to ask this question for the first time in a higher organism.   

Any such analysis has caveats. For example, RNAi only temporarily deactivates 

genes and may not reveal all effects of a synthetic null mutation.   This fact, in addition to 

errors in genome annotation such as the accidental inclusion of pseudo-genes, may 

contribute to the low proportions of genes with phenotypic effects identified in the RNAi 

analysis of the worm genome (~9% of the genes studied below).   However, the effects 
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that the RNAi approach detects are representative of those found with other approaches: 

64% of C. elegans genes with known knock-out phenotypes can also be detected with 

RNAi, and of those, over 92% give RNAi phenotypes similar to those observed 

previously (Kamath et al. 2003). Second, because RNAi relies on base complementarity 

between a (denatured) double-stranded RNA and its cognate mRNA, the method may not 

distinguish between closely-related gene duplicates. We alleviate this problem by using 

only the 13,565 genes for which an RNAi clone specific to the gene – and not affecting 

multiple targets – was available (Kamath et al. 2003) and for which an unambiguous 

identification in release 73 of wormpep (all protein-coding genes in the C. elegans 

genome, Stein et al. 2001) could be made. Third, unlike microbes, where growth rate 

differences can be measured with great accuracy (Steinmetz et al. 2002), indicators of 

fitness cannot be as reliably estimated for multicellular organisms.  Fourth – and this is a 

limitation shared by all laboratory studies – phenotypic effects of mutations are usually 

only assessed in a small number of environments. That is, they do not necessarily reflect 

fitness differences in the natural environment. Despite this caveat, the resolution of such 

experiments is sufficient for our purpose: to distinguish the role of duplicate and single-

copy genes in the buffering of mutations.  

Methods 

Identification of gene duplicates 

We identified duplicates in the C. elegans genome (The C. elegans Sequencing 

Consortium 1998) using our previously described whole-genome analysis tool (Conant & 

Wagner 2002, reproduced here as the appendix).   For this analysis, we used only 
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duplicate pairs separated by a nonsynonymous distance (Ka) of 1.0 or less (calculated by 

the maximum likelihood method of Muse and Gaut/Goldman and Yang; 1994).  Use of a 

more liberal threshold of Ka<2.0 identified only 20 more duplicate genes, suggesting that 

our results are not strongly biased by this cut-off.  Genes not identified as duplicates 

under these criteria were treated as single copy genes. We used release 73 of wormpep 

for this analysis (Stein et al. 2001), and only genes present in this release of the genome 

were analysed.  

RNAi interference (knock-down) data 

Data on gene knock-down effects were obtained from the RNA interference (Fire et 

al. 1998) experiments of Kamath and collaborators (Kamath et al. 2003).  Because 

interfering RNAs may not distinguish between closely related gene duplicates, we 

excluded clones annotated as affecting multiple targets (Kamath et al. 2003).  

We grouped phenotypic knock-down effects into three categories: no phenotype, 

viable but detectable phenotype, and lethal phenotypes and assigned numerical scores to 

the categories in order of increasing defect: 0 for no phenotype, 1 for moderate (viable) 

phenotype, and 2 for lethal phenotype.  

Effect of gene family size and evolutionary distance on knock-down 

phenotype  

We first asked whether the distribution of genes into the three phenotypic 

categories was affected by the number of paralogs a gene has.  We grouped genes into 5 

classes (genes with 0, 1, 2-3, 4-7, or 8 eight or more paralogs, see figure 5). We then 

asked whether the proportion of genes with the three phenotypes differed (i) between 



 

 39

single copy genes and genes that have (at least one) duplicate, and (ii) between the gene 

families of various sizes shown in figure 5.  

To address question (i), we calculated the expected number of genes with each of 

the three knock-down effects among the genes with at least one duplicate, using the 

phenotypic proportions seen in the single copy genes.  By comparing these 3 expected 

values to the observed number of genes of each phenotype among duplicated genes, we 

were able to use a χ2 goodness-of –fit test with 2 degrees of freedom to ascertain 

statistical significance. 

To address question (ii), we used the same approach, limiting our comparisons to 

adjacent duplication classes.  For example, we asked whether the phenotype distribution 

is the same for genes with one duplicate as for genes with 2-3 duplicates. 

To ask whether phenotypic effects were correlated with the evolutionary distance 

between duplicates, we compared the proportion of genes in the three phenotypic 

categories to both the amino acid distance (the fraction Ka of substitutions per non-

synonymous site) between closest duplicates and the synonymous distance (the fraction 

Ks of substitutions per synonymous site) between closest duplicates. We calculated the 

Pearson product-moment correlation r between the distance (Ks or Ka) and the proportion 

of genes in each of the three phenotypic categories (figures 6 and 8). In the case of Ks, we 

included only duplicate pairs where Ks <2.0 and in which both genes showed an effective 

number of codons  (ENC, Wright 1990) greater than 43.   This choice of ENC cut-off 

excludes approximately 10% of genes in the C. elegans genome with the lowest values of 

ENC.   Although failing to exclude any genes with high codon bias yields a correlation 

between knock-down effect and Ks (presumably due to the association between 
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expression level and knock-down effect seen in figure 9), varying the ENC cut-off so as 

to exclude between 4% and 30% of genes yields the same result (no significant 

association) as reported in Results (data not shown). To test the statistical significance of 

r, we randomly reshuffled the phenotypic effects with respect to the distances 1000 times 

and recalculated r for each reshuffled data set.   

 To examine whether duplicate genes show similar phenotypic effects, we counted 

the number of duplicate gene pairs within a given window of Ka where one member 

showed no knock-down phenotype and the other showed either a lethal or a moderate 

phenotype. We tested for significance using the same randomisation test. 

Association between knock-down effect and gene expression 

    To identify a statistical relationship between knock-down effect and gene 

expression, we used a large microarray expression dataset comprising 553 experiments  

and most C. elegans genes (Kim et al. 2001). The data consists of logarithmically (log2) 

transformed expression changes relative to a reference condition that depends on the 

particular experiment (Kim et al. 2001). We identified pairs of duplicate genes (see 

above) for which RNAi data were present and which were separated by a pairwise Ks of 

0.2 or more. For each duplicate pair, we assembled all microarray experiments for which 

data were available for both genes and calculated the Pearson correlation coefficient (r) 

between the two genes’ expression changes.  We then calculated the correlation between 

this expression similarity of the pairs and their average knock-down effect (calculated 

using the numerical scheme above). A randomisation analysis was used for significance 

testing.  We also repeated this analysis substituting the proportion of gene pairs where 

exactly one gene had a lethal effect (see results) for the average knock-down effect.  
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Using the duplicate pairs identified for the expression analysis above, we next calculated 

the statistical association between the pairwise correlations in duplicate expression from 

the experiments by Kim and collaborators (see above) and the pairwise Ka between the 

duplicates (figure 10). 

To assess whether highly expressed genes show strong knock-down effects, we 

used results of an experiment (Hill et al. 2000) that had determined the expression levels 

of 18,791 C. elegans open-reading frames at 8 time points during the worm’s lifecycle.  

Using Affymetrix gene chips, these authors estimated the concentration of transcripts (in 

parts per million) at each time point.  We considered only the 2624 genes where RNAi 

knock-down data were available, where a transcript was detected by all hybridization 

replicates, and where that transcript showed an expression level above 20 parts per 

million (ppm). We compared the log10 transform of each gene’s highest concentration 

across the eight timepoints to the RNAi knock-down effect.   We again evaluated 

significance using a randomization test as outlined above. 

Our final analysis compared the level of gene expression (using the same 

concentration values as above) to amino acid distance (Ka).  This analysis allowed us to 

judge whether effects of sequence and expression similarity on knock-down might be 

differing measures of the same underlying phenomena.  Only genes which appeared in 

the knock-down data generated by Kamath and coauthors were used for this analysis.  

We again used the base-ten logarithm of the maximum concentration, comparing it to Ka 

and determining significance with a permutation test. 
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Results 

Many weak phenotypic effects are due to 

single-copy genes. We grouped phenotypic 

effects of RNAi interference (gene knock-

down) into three categories: no phenotype 

(12,387 genes), viable but detectable 

(moderate) phenotype (395 genes), and lethal 

phenotypes (783 genes). The detectable 

category groups phenotypes with slow or 

arrested post-embryonic growth and post-

embryonic phenotypes without such growth 

defects (Kamath et al. 2003) together. 

Among the 13565 genes analyzed, 

8861 are single copy, of which 88.8% (7872) 

show no detectable phenotype in an RNAi 

knock-down experiment. The proportion of 

genes with no RNAi phenotypes that occur in 

gene families of size two or greater is 

somewhat larger: 96.0% (4515 of 4704) of 

such genes have no knock-down phenotype.  

For the other two classes of phenotypes, the 

relationship is reversed: more lethal 

phenotypes are due to single copy genes 
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Figure 5: Proportions of genes with A) no 
RNAi knock-down phenotype, B) a 
detectable and viable phenotype, and C) a 
lethal phenotype, categorized by gene 
family size, that is, the number of paralogs 
per gene.  Absolute numbers of genes in 
each  family size category are 8861 (single 
copy genes), 316 (genes with 1 duplicate), 
1624 (genes with 2-3 duplicates), 1209 
(genes with 4-7 duplicates), and 1555 
(genes with 8 or more duplicates). 
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(7.5% or 668 genes) than to duplicated genes (2.4% or 115 genes), as are more moderate 

phenotypes (single copy genes: 3.6% or 321 genes;  duplicate genes: 1.6% or 74 

genes).  The large numbers of genes involved makes even these small differences 

statistically highly significant (χ2=243; df=2; P<10-10). We now examine in greater detail 

the relationship between gene family size and RNAi phenotype. 

 

Gene family size is correlated with RNAi phenotype. Figure 5 demonstrates a correlation 

between the size of a gene family and the frequency of the different RNAi knock-down  

effects.  Specifically, the larger a gene family, the more likely that its members have no 

RNAi phenotype (Figure 5A), and the less likely that they have either a detectable 

(Figure 5B)  or a lethal phenotype (Figure 5C).  Absolute differences in proportions are 

again small: 88.8% of single-copy genes but 94.0% of genes with one duplicate have no 

detectable RNAi phenotype. We asked whether any two adjacent size categories in the 

panels of Figure 5 contain equal proportions of genes (see methods).  Because we are 

making four comparisons in this analysis, we used a Bonferroni correction (Sokal & 

Rohlf 1995), performing individual tests at a significance level of 0.0125 to yield a 

family error rate of 0.05.   Adjacent categories of gene family sizes with the same 

coloring in figure 5 indicate cases where we cannot reject the hypothesis of equal 

proportions across the three phenotypes.  Only the categories with one duplicate and with 

2-3 duplicates show such equal proportions: all others contain different proportions of 

genes (P≤0.0125). In sum, there is strong evidence that the phenotypic effect detected in 

knock-down experiments changes with increasing gene family size. 
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The more 

similar two duplicates 

are, the less severe is 

their knock-down 

effect. We next 

examined the 

proportion of genes 

with a given 

phenotypic effect as a 

function of similarity 

between duplicates, 

using the amino acid 

distance Ka (number 

of non-synonymous substitutions per non-synonymous site, Li 1997) to measure 

similarity.  The proportion of genes with no phenotypic effect decreases with amino acid 

distance to the nearest paralog (Fig. 6; Pearson’s r =-0.92; n=4639, P=0.002, significance 

calculated using a permutation test on the binned data, see methods).  Likewise, the 

proportion of genes with moderate and lethal effects increases with increasing amino acid 

distance (Fig. 6; inset; r=0.77; P=0.04 and r=0.95; P=0.001, respectively, n=4639 for 

both).   We also asked whether two duplicates generally have similar knock-down effects 

and found that amino acid distance (Ka) and the proportion of duplicate pairs with 

different knock-down effects have a strong positive correlation (Pearson’s r=0.96; 

n=3314; P<0.001). That is, the more distant two duplicates are, the more likely it is that 
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Figure 6: Relationship of nonsynonymous distance to nearest gene 
duplicate (Ka) and proportion of genes with no RNAi knock-down 
phenotype.  4639 total gene pairs were analyzed.  Inset shows proportions 
of viable and lethal knock-down phenotypes. 
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one of them has a more severe knock-down effect than the other (Figure 7).   Previous 

genome-scale analyses in various organisms showed that many duplicate genes have 

asymmetric sequence or functional divergence, as indicated by protein interactions, 

sequence divergence, and gene expression patterns (Wagner 2002).  For example, for 

some 30% of worm duplicate genes, one duplicate diverges faster than the other on the 

amino acid level (Conant & Wagner 2003, chapter 2 of this manuscript). Asymmetric 

divergence, which may increase with amino acid distance and divergence time, could 

explain why distantly related duplicates often show different mutational effects.   

As noted above, we removed from our analysis all genes with possible cross-

reactivity according to Kamath and collaborators (2003).  In addition, we assessed 

whether there were any remaining cross-reactivity biases in the above two analyses by 

repeating these analyses excluding gene pairs with Ka<0.1.  Doing so changed neither the 

association of knock-down effect and amino acid sequence similarity nor the association 

of asymmetry of knock-down effect and sequence similarity (data not shown).  

We also assessed whether time since duplication affects knock-down phenotypes 

by comparing knock-down effect to Ks (number of substitutions per synonymous site, Li 

1997).   Ks is a better indicator of divergence time than  Ka because it is subject to fewer 

evolutionary constraints and thus may change at an approximately constant (neutral) rate 

(Li 1997).  Interpretation of Ks values is confounded by codon usage bias, a feature of 

very highly expressed genes which can lead to slower rates of synonymous evolution in 

such genes (Bernardi & Bernardi 1986; Comeron & Aguade 1998). In C. elegans, a 

measure of codon usage bias is the effective number of codons (ENC, Wright 1990). It 

shows a significant correlation (Pearson’s r = -0.57, Spearman’s s=-0.45, n=3160, 
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P<0.0001 for both) to a 

gene’s maximum 

expression level during C. 

elegans development, as 

measured by 

oligonucleotide microarrays 

(Hill et al. 2000). We thus 

eliminated genes with a 

high codon usage bias (low 

ENC) before analysis. The 

remaining genes showed no 

significant association 

between Ks and the 

propensity to have either 

no, a viable, or a lethal 

phenotypic defect (n=1791, 

no phenotype: r =-0.13, 

P=0.39; viable phenotypes: 

r=0.53, P=0.10; lethal 

phenotypes: r=-0.59, 

P=0.14; see figure 8).  To 

be certain that this lack of 

association is not an 
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Figure 7:  Relationship of nonsynonymous distance to nearest 
duplicate (Ka, x-axis) and proportion of genes with asymmetric 
knock-down effects (y-axis; see text for details).  
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Figure 8: Relationship of synonymous distance to nearest gene 
duplicate (Ks) and proportion of genes with no RNAi knock-down 
phenotype.   Inset shows proportions of viable and lethal knock-
down phenotypes. 



 

 47

artefact of our permutation test, we have also applied a χ2-goodness-of-fit test to these 

data, testing the null hypothesis that the different ranges of Ks all show the same 

proportions of null, moderate and lethal phenotypes.  This test is conservative in the sense 

that it can reject the null hypothesis even if there is no linear trend in the data.  However, 

the χ2 test reinforces our conclusions of no association (χ2=6.7; df=17; P=0.99).  

Expression level and knock-down effect.  Similarity in amino acid sequence is only one 

indicator of functional similarity among gene duplicates. Studies of individual gene 

duplicates have shown that functional divergence sometimes occurs through diverging 

expression patterns rather than diverging sequences (Hanks et al. 1995; Li & Noll 1994; 

Wang et al. 1996).  This raises the question whether expression divergence among gene 

duplicates, which is generally rapid (Gu et al. 2002; Wagner 2000a), is also associated 

with phenotypic effect.  To address this question, we compared similarity in expression 

levels (see Methods) between duplicate genes to the average RNAi knock-down effect.  

To avoid artefacts from cross-reactivity in microarray experiments, we excluded 

duplicate pairs where Ks<0.2.  There is a significant correlation between similarity of 

expression pattern and the average knock-down effect: (r=-0.80, n=3028, P=0.04, Figure 

9A).  We observe a similar association if we replace the average knock-down effect with 

the proportion of gene duplicates where one gene shows a lethal knock-down effect while 

the other does not (r=-0.88, n=3028, P=0.02). Excluding genes with high codon usage 

bias (low ENC) does not change this pattern either (low ENC; r=-0.81, n=2535, P=0.05).   
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It is possible that sequence similarity and expression similarity co-vary, and hence 

that the association between knock-down effect and the two therefore reflects the same 

underlying phenomenon.  However, the magnitude of the correlation in expression 

similarity and amino acid sequence distance is weak (Pearson’s r:-0.29, Spearman’s s:-

0.27, n=3032, P<0.001 for both,  figure 10, see methods).  Moreover, considering only 

restricted ranges of Ka in the above analysis should eliminate the observed correlation in 

figure 9A if it is truly a result of the covariance of Ka and expression. We determined the 

association between gene expression level and knock-down effect separately for gene 

duplicates within five ranges of Ka (0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, and 0.5-0.6). 

Despite small sample size (several bins had fewer than 30 elements), four of the five bins 

showed a negative association, just as the complete data.  
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Figure 9:  A)  Association of duplicate expression similarity and average knock-down effect.  The x-axis 
shows the Pearson’s r for the correlation of the expression levels of the two duplicates, while the y-axis 
shows the average RNAi knock-down effect (see methods). B) Distribution of knock-down effects by 
expression level.  The x-axes show two measures of gene expression: the log10 of the parts-per million 
counts for each gene (the relative expression level, taken at the maximal expression timepoint—see 
methods) or the effective number of codons (ENC—see methods). The y-axis shows the proportion of 
genes with no knock-down phenotype and with a lethal knock-down phenotype. 
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We also find a 

statistically 

significant relationship 

between maximal 

expression level and 

knock-down effect, 

consistent with the results 

of others in yeast (Gu et 

al. 2003; Pál et al. 2003). 

Using the highest 

expression level of each 

gene measured during 

eight time points in the 

worm’s life cycle (Hill et al. 2000), we find that highly expressed genes are more likely 

to show a lethal effect (Pearson’s r = 0.77; n=2624; P=0.02) and less likely to show no 

effect from knock-down (r= -0.83; n=2624; P=0.005; Figure 9B). A similar statistical 

association holds if codon usage bias (low ENC) is used as an indicator of high 

expression. (No effect knock-downs: Pearson’s r=0.93, P=0.001, lethal knock-downs: 

Pearson’s r=-0.89, P=0.005; n=13529 for both; Figure 9B). This result is unsurprising, 

given the negative correlation of ENC and microarray gene expression levels seen above. 

Finally, it has been noted in yeast (Pál et al. 2001) that highly expressed genes are 

under stronger evolutionary constraints and thus evolve more slowly. Data from duplicate 

genes in C. elegans are consistent with this finding: Amino acid distance, Ka, and 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

E
xp

re
ss

io
n 

S
im

ila
rit

y

Amino Acid Sequence Similarity (Ka)

Little Association Between Sequence and Expression Similarity

Pearson’s r: -0.29, Spearman’s s: -0.27, n=3032, P<0.001 for both

Figure 10: No strong association between the sequence similarity of a 
duplicate gene pair and the similarity of their expression patterns (see 
methods) 



 

 50

expression level (data as described for figure 9B) show a significant negative correlation 

(Pearson’s r = -0.80, P=0.01; n=1552). 

Discussion 

Although the absolute number (7872) of single-copy genes with no knock-down effect is 

higher than the number of duplicate genes with no knock-down effect, proportionally 

more duplicate genes have no knock-down effect than do single copy genes.  Kamath and 

collaborators noted a similar pattern using a different method of identifying duplicates 

(Kamath et al. 2003).  In addition, mutational robustness is greatest for closely related 

and similarly expressed gene duplicates, as well as for duplicates in large gene families. 

These findings show the important role of both single copy genes and duplicate genes in 

robustness against mutation.  Weak knock-down phenotypes for duplicate genes can be 

explained by gene redundancy and overlapping gene functions. Much less clear is how 

single copy genes can be eliminated without detectable effect, even though this 

phenomenon is now established in two organisms.  One possibility is that for many 

single-copy genes the worm genome harbors at least one other gene with a convergent 

function, yet no sequence similarity. Consistent with this possibility is the observation 

that sequence similarity search algorithms miss many genes with dissimilar sequence but 

convergent tertiary structure (Hubbard et al. 1998). Whether such convergent evolution 

could explain most cases of single-copy genes with no phenotypic effect is unknown. 

However, the massive scale – more than 7,000 genes – at which such convergence would 

have to occur makes this seem unlikely. A second possibility is that much mutational 

robustness is due to interactions of unrelated genes in genetic networks. Mechanistically, 

this kind of buffering is best understood in metabolic networks.  Such networks can 
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compensate loss-of-function mutations in many (non-redundant) genes by rerouting the 

flux of metabolites through alternative pathways (Edwards & Palsson 2000).   

Is gene redundancy more important in the multicellular worm than in the 

unicellular yeast?  In yeast 39.5% of single copy genes versus 64.3% of duplicates gene 

account for synthetic null mutations with weak or no effect on growth (Gu et al. 2003), a 

ratio of 1:1.63. The proportions we find in the worm indicate a ratio of 1:1.08, less 

strongly skewed towards gene duplicates. Conversely, in yeast 29.0% of single copy 

genes versus 12.4% of duplicate gene account for synthetic null mutations with lethal 

effects, a ratio of 1:0.43. In the worm, the corresponding percentages are 7.5% and 2.4%, 

yielding a ratio of 1:0.32. From this perspective, gene duplication in the worm is less 

important than in yeast for causing weak phenotypic effects. However, gene duplication 

is slightly more important in the worm in preventing lethal phenotypic effects.   

A complementary analysis follows that of Gu and collaborators, who estimated  

lower and upper bounds on the proportion of weak gene knockout effects that can be 

attributed to duplicate genes (Gu et al. 2003). Their lower bound derives from the 

assumption that the difference in proportions of mutations with no effect between single 

copy genes and duplicate genes is due to gene duplication.  For our worm data, 89% of 

single copy genes and 96% of duplicate genes had no knock-down effect.  This  

difference of 7% indicates that at least 323 duplicate genes show no knock-down effect 

because they are duplicates.  The lower bound in the worm is thus approximately 3% 

(323/12387), compared to 23% in yeast. The main caveat to this lower bound is that 

RNAi detects fewer phenotypic effects than does gene knockout in yeast, biasing the 

estimate. To obtain an upper bound on the contribution by gene duplicates, Gu and 
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collaborators assumed that all weak knock-out effects in duplicate genes are due to 

redundancy among duplicates.  In the worm, this implies that all 4515 duplicate genes 

with no phenotypic effect showed this phenomenon because of functional redundancy, 

and hence that roughly 36% of robustness is due to buffering from duplication.  In sum, 

the available yeast data suggests that the contribution of duplicate genes to weak 

phenotypic effects ranges between 23% and 59%, whereas the corresponding range for 

the worm is 3%-36%. An important caveat to this comparison is that synthetic-null 

mutations in yeast and RNAi represent fundamentally different approaches to generating 

phenotypic effects.   Moreover, the patterns of duplication in these two organisms have 

resulted in different functional distributions of duplicate genes (Conant & Wagner 2002).  

 Despite uncertainties in estimating the relative contribution of gene duplicates to 

the buffering of null mutations, it is clear that much gene redundancy exists in 

eukaryotes. Why is this so? At least three possibilities exist. First, gene redundancy may 

be an accidental by-product of gene duplications, serving no adaptive role.  If so, 

redundancy is just a transient state after gene duplication.  Because multiple lines of 

evidence indicate that sequence and functional divergence after gene duplication is rapid 

(Gu et al. 2002; Lynch & Conery 2000; Wagner 2002), redundancy should then only be 

observed in recent gene duplicates. This prediction is contradicted by at least two lines of 

evidence. First, many genomes contain ancient gene duplicates with very similar 

functions.  Examples include the yeast TPK gene family (catalytic subunits of cyclic 

AMP-dependent protein kinase, Toda et al. 1987) and the yeast CLN gene family 

(cyclins required for the G1-S transition in the cell cycle, Nasmyth 1993).  Although 

synthetic null mutations in member genes of both (well-characterized) families show only 
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subtle fitness defects (Benton et al. 1993; Smith et al. 1996), even the youngest duplicate 

pair within each family is ancient (>100 million years old, Wagner 2001).  A second line 

of evidence is our figure 6, which shows that even highly diverged duplicate genes are 

more likely to show no phenotypic effect in RNAi than single copy genes. The age of 

duplicates cannot be reliably estimated from amino acid divergence. However, for a third 

of the duplicates shown, synonymous sites on DNA have completely diverged (results 

not shown), demonstrating that these duplicates are ancient. Mutational robustness 

through gene redundancy is not just a transient phenomenon.  

The second possibility is that redundancy is maintained whenever it is 

advantageous for an organism to produce copious amounts of gene product (Seoighe & 

Wolfe 1999). Clearly, for duplicate genes to fulfill such a role, they must maintain a high 

degree of functional similarity.  Consistent with this notion is our observation that highly 

expressed genes are more likely to have a duplicate with high sequence similarity than 

other genes.  This pattern has been previously described for duplicate genes in yeast  

although it may have other causes (Pál et al. 2001). The major difficulty with this 

argument is that if most redundant gene duplicates are maintained because the genes must 

be highly expressed then gene duplication can not be responsible for many weak gene 

knock-out effects, because eliminating one of two duplicates would then have deleterious 

effects. Indeed, our results show that the loss of highly expressed genes in the worm 

tends to result in severe phenotypic effects.  

The last remaining possibility regards an adaptive role for redundant gene 

functions. Population genetic modeling (Cooke et al. 1997; Nowak et al. 1997; Wagner 

1999; Wagner 2000c) has shown that gene redundancy can be maintained by natural 
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selection of genotypes robust against mutations.  Such robustness is maintained 

indirectly, as organisms with redundant genes do not have higher fitness but rather 

accumulate in populations because they are less susceptible to deleterious mutations. The 

problem is that the selection pressure is very weak, of the order of the genic mutation rate 

µ (Wagner 1999; Wagner 2000c). Redundancy can thus only be indefinitely maintained if 

mutation rates are very high or populations are very large (effective size Ne>1/µ, Hartl & 

Clark 1997) . However, even in small populations, this evolutionary mechanism can 

substantially delay the functional divergence of duplicates and the concomitant loss of 

redundancy (Wagner 2000c). In addition, multifunctional gene duplicates with many 

pleiotropic interactions can also diverge very slowly in function, even in small 

populations (Wagner 2000c). C. elegans, whose populations consist largely of self-

fertilizing hermaphrodites, is likely to have small effective population size.  Nevertheless, 

it shows considerable redundancy in ancient gene duplicates (Figure 6), consistent with a 

slowing of duplicated gene divergence due to an adaptive role of redundancy.   

In sum, the worm genome contains thousands of single-copy genes with absent 

phenotypic effects. This phenomenon is most likely due to complex interactions in 

genetic networks that are still incompletely understood. Whether such robustness is an 

evolved or an intrinsic feature of genetic networks is an open question for future research. 

Conversely, gene duplications also contribute to numerous cases of genes with absent 

phenotypic affects. Many of these duplicates are ancient, raising the possibility that the 

functional divergence of genes may be slowed by selection for mutational robustness.   
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Chapter 4: Convergent evolution of gene circuits  

 
A version of this chapter has previously appeared as: Conant, G. C. and Wagner, A. 

(2003) “Convergent evolution of gene circuits, Nature Genetics, 34(3): 264-266.  
Copyright is reserved by Gavin Conant and Andreas Wagner.   
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Abstract: 

Convergent evolution occurs on all levels of biological organization and is a potent 

indicator of optimal design. We here show that convergent evolution also occurs in 

genetic networks, where it had previously not been demonstrated.  Specifically, we show 

that multiple types of transcriptional regulation circuitry in Escherichia coli and the yeast 

Saccharomyces cerevisiae have evolved independently and not by duplication of one or a 

few ancestral circuits.  

Introduction 

Repeated appearances of a complex structure in the history of life are a priori 

sufficiently unlikely as to require an explanation (Futuyma 1998).  Cases where a 

structure reoccurs in independent evolutionary lineages, as do the wings of birds, bats, 

and pterodactyls, are examples of convergent evolution: the reappearance of a structure 

due to selective pressures that favor similar solutions to similar problems. 

If, on the other hand, such a structure reoccurs in the same organism, there is a 

second possible explanation: duplication.  Families of gene duplicates, such as the human 

globin family, are the most well-known of such repeated structures.  In this case, gene 

duplication is a more likely source of commonality than is convergent evolution, 

especially since the similarity between family members extends to parts of the genes not 

involved in protein function, such as silent sites (Li 1997). Below, we will consider 

another repeated structure: genetic circuits in the transcriptional regulatory network of 

two micro-organisms. In the case of genetic circuits, although certain circuits are very 
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abundant, it is not clear a priori whether duplication or convergence is responsible for 

this abundance. 

Convergent evolution is a strong indicator of optimal design. It occurs on all levels 

of biological organization, from complex organ systems down to the structure of genes 

and proteins. For instance, eyes of similar basic design may have evolved multiple times 

independently; the wings of birds and bats have similar architectures, and both fish and 

whales have similarly streamlined body shapes, although the latter are secondarily 

descended from land mammals  (Futuyma 1998).  On the smallest scale, lysozymes have 

been repeatedly and independently recruited for digestion food in foregut fermenting 

herbivores including bovids, colubine monkeys such as languars, a bird, and the fruit fly 

Drosophila (Kornegay et al. 1994; Regel et al. 1998; Stewart et al. 1987). Antifreeze 

glycoproteins in two groups of fish that live in extremely cold environments at opposite 

ends of the globe, antarctic notothenioids and northern cods, have independently evolved 

similar amino acid sequences (Chen et al. 1997; Fletcher et al. 2001).  We here 

demonstrate a case of convergent evolution on the level of genetic networks. Our 

examples of convergent evolution are particularly interesting because they occur 

repeatedly in the same organism and cannot be attributed to duplication.  

Our work builds on recent studies that have identified small and abundant genetic 

circuit motifs in transcriptional regulation networks of the yeast Saccharomyces 

cerevisiae (Lee et al. 2002; Milo et al. 2002) and the bacterium Escherichia coli (Milo et 

al. 2002; Shen-Orr et al. 2002).  These authors represent the transcriptional network as a 

directed graph (see figure 11).  In this graph, nodes are genes and directed edges link 

transcription factors with the genes they regulate.  Circuits, therefore, are clusters of (in 
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this case) three or more nodes and any edges that connect those nodes.  Milo and 

coauthors (2002) performed a statistical analysis of networks from both yeast and E. coli, 

looking at all possible combinations of three and four nodes .  There a limited number of 

possible three and four node sub-graphs, so these authors where able to count the number 

of occurrences of each type of subgraph.  For instance, there are 13 possible three-node 

subgraphs, and of those 13, only 1, the feed-forward loop (figure 11), occurred in either 

yeast or E. coli more often than one would expect by chance.   

We will consider circuit motifs identified both by Milo and collaborators (2002) as 

well as by Lee and coauthors (2002).  They include regulatory chains, feed-forward 

circuits, and a “bi-fan” circuit (see figure 12b). The identification of such motifs invites 

questions about their evolutionary origin, for which there are two possibilities. First, 

these circuits may have come about through the duplication – and subsequent functional 

diversification – of one or a few ancestral circuits. Given the high frequency at which 

single genes and large genome fragments undergo duplication (Bailey et al. 2002; Lynch 

& Conery 2000; Wolfe & Shields 1997), this is a plausible scenario. However, it is 

equally possible that most of these circuits arose independently by recruitment of 

unrelated genes. If such convergent circuit evolution is prevalent, then evolved circuit 

motifs must have favorable functional properties, and natural selection will have played 

an important role in their creation. If, however, most circuits share a common ancestry, 

historical accidents may be primarily responsible for their abundance.  

Methods 

Circuit types. In E. coli, we examined feed-forward loops and “bi-fans” (see fig. 

12b).  To identify these motifs, a purpose-built computer program was used to locate 
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three and four node motifs within the full transcriptional regulatory network (released by 

Shen-Orr and collaborators 2002).  Before analysis, we removed any regulatory elements 

representing an operon rather than a single gene product from the E. coli data. A third 

kind of E. coli circuit, the dense-overlapping regulon described by Shen-Orr and 

collaborators (2002), does not have uniform topology, and is thus not suitable for our 

approach. 

In Saccharomyces cerevisiae we considered six classes of circuits, five of which 

were described by Lee et al. (2002).  These are autoregulation loops (one regulator 

influencing its own transcription), multi-component loops (a chain of regulators forming 

a closed regulatory loop), single input motifs (a regulator with multiple target genes), 

feed-forward loops (but see below), multi-input motifs, and regulatory chains (see fig. 

12b for the last three types of circuits).  

Although the feed-forward loop was identified by Lee and collaborators, the 

definition of the motif used differed slightly from that of Shen-Orr and collaborators 

(2002).  In particular, Lee and coauthors occasionally included as an intermediate 

regulator a gene that actually regulated the master regulator of the feed-forward loop.  

For the sake of consistency and to allow us to analyze motifs at varying levels of 

 

Figure 11: One type of subgraph, a  
feed-forward circuit (shown in black), 
embedded in a larger network graph.  
Circles are nodes (genes), while 
arrows (edges) indicate regulatory 
interactions 
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microarray stringency, we used the feed-forward loop definition of Shen-Orr and 

collaborators rather than that of Lee and collaborators. Thus, in yeast, we identified feed-

forward loops and bi-fans (a circuit not considered by Lee and collaborators: see 

description of E. coli circuits) using Lee and coauthors’ data but locating the circuits with 

the computer program used above in the E. coli analysis.   

Of the six circuit types available in yeast, autoregulation and single input motifs 

were inappropriate for our analysis as they contain only a single regulatory gene. The 

multi-component loop was also unsuitable because there are only 3 circuits of this type, 

containing only three distinct genes. Analysis of multi-input motifs and regulatory chains 

is complicated because these circuits contain variable numbers of regulatory genes. We 

analyzed each different size of these circuit types separately (a total of 16 analyses). 

We use two indicators of common gene circuit ancestry. To conceptualize these 

indicators, consider a genome with n regulatory circuits of identical topology, each 

comprising k genes. We call any pair of circuits related by common descent if all k gene 

pairs in the circuit pair are gene duplicates. Our first indicator, an index A of common 

circuit ancestry, is best understood in the context of a graph whose n nodes represent the 

n circuits (fig. 12a). Two nodes are connected in this graph if they are identical by 

descent. There are two extreme possibilities.  First, none of the n circuits might share 

common ancestry. In this case, the graph consists of n disconnected vertices (A=0). 

Second, all circuits may share common ancestry, in which case the graph is fully 

connected (A≈1). Between the extremes lies a spectrum of possibilities, where the graph 

has C connected components (1<C<n), each of which corresponds to one family of 

circuits that derive from a single  common ancestor. We define the index of common 
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ancestry A simply as A=1-(C/n). The greater A, the greater the fraction of circuits sharing 

a common ancestor. Our second indicator of common ancestry is simply the size of the 

largest family of circuits with common ancestry (Fmax).  In terms of the circuit graph, Fmax 

is the size of the graph’s largest component.   

In analyzing all these circuits, we considered only the regulatory genes in the 

circuits and not their downstream targets (Including target genes would result in even 

fewer circuits showing common ancestry).  We identified duplicated genes using gapped 

BLAST (Altschul et al. 1997) at a threshold value of E≤10-5.  Varying E from 10-3 to 10-

11 did not change the conclusions reached. There are more rigorous methods to identify 

duplicate genes. For example, one can call two genes duplicates only if their alignable 

regions exceed a certain length, if there is a high ratio of mismatches to gaps, and if a 

minimum percentage of nucleotides match (e.g., Conant & Wagner 2002, appendix). Any 

such criterion serves to eliminate false positive duplicates. However, we did not pursue a 

more stringent approach because false positive duplicates disfavor our hypothesis of 

independent circuit origin. That is, by using a liberal assay for identifying gene 

duplicates, the number of duplicate circuits may appear larger than it is. That our 

hypothesis holds up in spite of this methodical bias against it speaks in its favor.  

When evaluating instances of gene circuit duplication it is important to 

distinguish circuit duplication from simple gene duplication. We thus evaluated the 

probability that two circuits appear to be duplicates of each other merely because they 

both happen to contain duplicated gene pairs. For any circuit which showed potential for 

common circuit origin (i.e. A>0), we created a distribution of 1000 randomized circuit 

graphs, each formed by substituting randomly chosen genes for each gene in the original 
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graph. These new random graphs contain the same number of circuits and genes as the 

original graph, except that two circuits (nodes) are connected if the randomly chosen 

genes in them are paralogs of each other (selected at E≤Ecrit).  Naively, one might think 

that the random genes should be drawn from the genome as a whole. However, because 

only 112 regulator genes could potentially occur in these circuits under the experimental 

design of Lee and collaborators (Lee et al. 2002),  the most appropriate pool of genes to 

draw from is these regulatory genes. Calculating A and Fmax for each resampled graph 

yields a distribution of their values. We then asked whether the observed values of A and 

Fmax lie in the tails of this distribution. 

Finally, we assessed whether genes which are duplicates of each other are more 

likely to occur in the same type of circuit.  There are 112 regulators in yeast, but not 

every one occurs in each circuit type.  We define Pmotif as the probability that a randomly-

chosen regulator will occur in a particular circuit type (for example a bifan, see table 1).  

We then calculated Pmotif|duplicate,  the probability of a regulator occurring in that circuit 

type, given that at least one of its duplicates does.   If many gene circuits originated 

through gene duplication, members of one gene family will be more likely to co-occur in 

a circuit type than genes at large (Pmotif < Pmotif|duplicate).  To evaluate the statistical 

significance of observed values for Pmotif|duplicate , we tested the hypothesis Pmotif 

=Pmotif|duplicate with an (exact) one-sided binomial test (table 1) for all circuit types where 

Pmotif < Pmotif|duplicate . 

Results 

Neither of two abundant circuit types in E. coli show evidence of common 

ancestry, that is, A=0 and Fmax=1 for both types of circuits (Fig. 12b). To identify 
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duplicated genes and circuits, we used gapped BLAST (Altschul et al. 1997) at a 
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Figure 12:Circuit duplication is rare in yeast and E. coli. A) Two indicators of common ancestry for 
gene circuits. Each of n (=5) circuits of a given type (a feed-forward loop for illustration) is represented 
as a node in a ‘circuit graph’.  Nodes are connected if they are derived from a common ancestor, that is, 
if all k pairs of genes in the two circuits are duplicate genes.  A=0 if no circuits share a common 
ancestor (the graph has n isolated vertices), A≈1 if all circuits share one common ancestor (the graph is 
fully connected). The number C of connected components indicates the number of common ancestors 
(two in the middle panel) from which the n circuits derive. Fmax is the size of the largest family of 
circuits with a single common ancestor (the graph’s largest component).  B) Little common ancestry in 
six circuit types.  We considered two circuits as related by common ancestry if each pair of genes at 
corresponding positions in the circuit had significant sequence similarity (see text). Each row of the 
table shows values of C, A, and Fmax for a given circuit type, followed in parentheses by their average 
values ± standard deviations and P-values (see methods).   
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deliberately liberal threshold value of E≤10-5 (Varying E from 10-3 to 10-11 did not change 

the conclusions reached; results not shown).  Among the 18 abundant yeast circuit types 

we studied (see methods), only three, the feed-forward loops, multi-input modules of size 

2, and bi-fans showed evidence of common ancestry (A>0 and Fmax>1; Fig. 12b). This, 

however, might be due to chance alone, simply because genomes contain many duplicate 

genes. We thus applied the above permutation test to determine the significance of the 

observed values. 

  None of the observed values of A were significantly different from values 

expected by chance alone (see methods).   For example, yeast contains 542 bi-fan motifs 

that show an index of common ancestry A=0.197. The mean of A for 1000 randomly 

resampled circuit graphs was A=0.135 (standard deviation 0.070). The probability of 

observing the actual value of A=0.197 by chance alone is P=0.18: not small enough to 

reject the null hypothesis. A similar pattern holds for the maximum circuit family size 

Fmax=49 for this circuit. In comparison to the randomly resampled circuit graphs with an 

average Fmax of 41 (s.d. 31.1), there is a probability of P=0.33 of obtaining Fmax=49 by 

chance alone. We only observed a marginally significant value of Fmax =5 for feed-

forward loops (P=0.05).   The corresponding circuit graph has a single large component 

of 5 circuits, and 43 single circuit components. That is, 43 of the 48 instances of this 

circuit type have no common ancestor. The remaining five circuits contain only 5 

different genes (ABF1, MBP1, MOT3, SWI4, and SWI6), that is, they share multiple 

genes. The repeated presence of the highly duplicated SWI4 gene in these circuits is 

responsible for the single large component. 
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The study that first described the structure of the yeast transcriptional regulation 

network relies on genome-scale chromatin precipitation experiments that use a statistical 

error model to distinguish true from spurious regulatory interactions (Lee et al. 2002).  In 

our analysis thus far, we have used the error threshold Pe=10-3 employed by the authors. 

In order to gain additional confidence in our conclusions, we repeated our analysis with 

error thresholds ranging from a very liberal Pe=10-2 to a conservative Pe=10-5 for the 

yeast bi-fan and feed-forward circuits. For the bi-fans, no evidence of common circuit 

ancestry emerged with varying error threshold. That is, both A and Fmax were no different 

than expected by chance alone (results not shown). For feed-forward loops, we observed 

a marginally significant value of A=0.11 (P=0.03) and Fmax =3 (P=0.03) at Pe≤10-4. 

However, lowering Pe further to Pe=10-5 yielded both A=0 and Fmax=1.    

In a complementary analysis, we asked whether members of one gene family  

preferentially occur in one type of gene circuit. This is the pattern expected if many gene 

circuits originated through gene duplication. Specifically, we asked whether the 

likelihood that a gene occurs in a circuit of a given type increases if one of its duplicates 

occurs in a circuit of this type. Table 1 shows that none of the circuit types we examined 

Table 1: Gene families are not over-represented in circuit types 

Organism Circuit Type Pmotif
a Pmotif|duplicate

b P c 

S. cerevisiae  Bi-fan 
Feed-forward 
Multi-input motif 
Regulator Chains 

0.82 
0.38 
0.77 
0.64 

0.80 
0.42 
0.76 
0.67 

NA 
0.21 
NA 
0.30 

E. coli  Bi-fan 
Feed-forward 

0.50 
0.82 

0.67 
0.67 

0.11 
NA 

a: Probability of a randomly-chosen regulatory gene occurring in a given circuit type.  
b: Probability of a regulatory gene occurring in a circuit type given that one of its duplicates occurs in 
that circuit type (see Methods) 
c: P-value for one-sided exact binomial test of the null-hypothesis Pmotif = Pmotif | duplicate.  ‘NA’ 
indicates that a test has not been carried because Pmotif > Pmotif | duplicate. The number of transcriptional 
regulators was n=112 and n=22 for the yeast and E. coli analyses, respectively. 
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showed this biased pattern of occurrence. In addition, we examined whether the genes 

within any one circuit type preferentially arose through gene duplication but found no 

such pattern (results not shown). Gene duplicates seem to be distributed randomly across 

circuit types, with no discernable regularities.   

Discussion: Convergent Circuit Evolution 

Our analysis of 2 circuit types in E. coli did not find any hints of common ancestry.  

The same was the case for the yeast regulatory chains (of any length), or the yeast multi-

input motifs with more than two regulators. Of the remaining three yeast circuit types 

studied, two show common ancestry indistinguishable from that expected by chance 

alone. Only feed-forward loops show marginally significant values of either A or Fmax, 

but this finding is not robust to changes in the error threshold Pe. In addition, the vast 

majority of feed-forward loops have clearly independent evolutionary origins. Among 48 

circuits of this type, 43 are composed of unrelated genes (Figure 12b).  We also note that 

the probability of falsely identifying a pair of circuits as duplicates of each other scales as 

pn, where p is the probability of randomly choosing a pair of genes that are duplicates and 

n is the circuit size.  In other words, the larger a circuit is, the smaller is the probability of 

falsely identifying it as a duplicate of another circuit. The larger circuits are exactly the 

circuits where we see not even non-significant evidence of duplication, that is, where 

A=0 and Fmax=0.    

Multiple indicators of gene function, including gene expression, promoter structure, 

and protein interactions, indicate that most duplicate genes diverge rapidly in function 

(Dermitzakis & Clark 2002; Gasch et al. 2000; Gu et al. 2002; Wagner 2000a; Wagner 

2001). Our finding that small gene circuits do not share common ancestry, and that 
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duplicate regulatory genes are randomly distributed across gene circuit types also 

supports this point, because it implies that duplicate transcriptional regulators can readily 

evolve new regulatory interactions. The short DNA binding sites of transcriptional 

regulators may account for much of this plasticity. In microbes like yeast and E. coli, 

with huge population sizes, new binding sites for transcriptional regulators can arise by 

chance alone on very short time scales (Stone & Wray 2001). Results of laboratory 

evolution experiments in yeast, which can permanently alter the expression of thousands 

of genes within several hundred generations, testify to this evolutionary plasticity (Ferea 

et al. 1999). Transcriptional regulation circuits are thus ideal to observe instances of 

convergent evolution, because natural selection has much raw material – variation in 

regulatory interactions – to shape such circuits. The resulting abundance of convergently 

evolved circuits also speaks to the longstanding neutralist-selectionist debate (Li 1997; 

McDonald & Kreitman 1991; Zhang et al. 1998) about the role of selection in shaping 

genes and their products. It suggests that natural selection may be very important in 

enriching genomes for well-designed circuits.  

The finding that the same type of gene circuit has evolved again and again makes a 

strong case that a circuit type has optimal design features. For example, the design of a 

feed-forward loop may serve to activate the regulated (‘downstream’) genes only if the 

upstream-most regulator is persistently activated. Conversely, it can rapidly deactivate 

downstream genes once this regulator is shut off  (Shen-Orr et al. 2002).  Our results also 

suggest that convergent evolution, which may be rare on the level of protein sequences 

(Doolittle 1994), may play an important role on the higher level of biological 

organization of gene circuits. Stephen Jay Gould famously asked what would be 
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conserved if life’s tape – its evolutionary history – was rewound and run a second time 

(1989). Transcriptional regulation circuits would, at least in abundance, come out just 

about the same.  
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Chapter 5: Conclusions and Discussion 

 

This chapter is copyrighted by Gavin Conant. 
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 The three studies described above individually offer insights into distinct 

problems in molecular evolution which are discussed in their respective chapters.  

However, taken together, the three studies also provide valuable perspective on some 

larger questions.  In particular, I have explored the relationship of duplication (gene and 

otherwise) and the appearance of novel features in organisms (functional divergence).  

The most naïve expectation would be that functional divergence and duplication would 

be tightly coupled, so that surviving duplicates would almost invariably show some 

evidence for diversification in function.  (This argument does not, however, preclude 

diversification occurring without duplication).  My results, however, indicate that 

duplication and diversification need not always go hand in hand.  For instance, even in 

chapter 2 where I find that many gene duplicates show asymmetric sequence divergence, 

it is important to note that the majority of duplicates (~70%) did not show such 

asymmetry, meaning that I have no sequence-based indications of functional divergence 

for more than two-thirds of these gene pairs.  Of course, both parts of this statement need 

to be interpreted cautiously: asymmetric divergence alone is insufficient to demonstrate 

functional divergence.  Asymmetry is nonetheless suggestive of functional divergence, 

particularly because asymmetric divergence of synonymous sites is much rarer 

(unpublished data).  On the other hand, the rate of asymmetric sequence divergence likely 

understates the overall rate of divergence since evolution occurs not only in coding 

sequences, but also in expression patterns.  As the results above and those of other 

researchers suggest (Fig. 10; Wagner 2000a; Gu et al. 2002), evolution of expression 

patterns and sequences is generally not highly correlated, so duplicates without 
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asymmetric evolution in coding sequence may show asymmetries in expression (in fact 

Wagner 2002 showed such asymmetries to be common).   

Assuming that not all duplicates have evolved distinct functions, what is the 

explanation for the preservation of the remaining duplicate pairs?  As discussed in the 

introduction, selective forces are needed to protect duplicate pairs from the degenerative 

effects of genetic drift. In addition to the three possibilities already discussed, one other 

potential means of preservation is suggested by work on RNA interference (see chapter 

3).   Researchers have found that at least one pair of duplicate genes (Stellate and 

Suppressor of Stellate) is preserved in fruit flies so that one member of the paralog pair 

can down regulate the other by an RNAi-like mechanism (Aravin et al. 2001). The 

importance of this mechanism in maintaining duplicates is not yet clear, and it differs 

from the three already discussed in that the duplicate need not be preserved in its entirety 

as long as sufficient sequence similarity remains for the  RNAi pathway.  Of course, my 

work in chapter 3 offers further evidence that at least some duplicate genes may be 

retained to provide mutational robustness.  Both of these examples are cases where 

duplicates are maintained to confer advantages other than those provided by functional 

divergence. 

  In chapter 4, I also found cases where novel structures were created through the 

action of natural selection without intervening duplication. In particular, transcriptional 

regulatory circuits have repeatedly and independently evolved because of their beneficial 

attributes. This suggests that transcriptional regulatory networks, at least, are flexible 

enough to produce new functions without the need to “backup” existing structures 

through duplication.  Researchers are increasingly aware of the importance of various 
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types of networks in biology (Alon 2003; Bray 2003), be they of metabolites (Fell & 

Wagner 2000; Jeong et al. 2000), interacting proteins (Fraser et al. 2002; Hahn et al. 

2004; Jeong et al. 2001) or transcription factors (Lee et al. 2002; Milo et al. 2002; Shen-

Orr et al. 2002).  One important characteristic of such networks is that changing the way 

network member genes or proteins interact is generally less difficult than creating new 

members (for example adding a protein interaction or transcription factor binding site 

rather than evolving a new protein).  As a result, many evolutionary novelties may owe 

their origins to such changes of interaction, changes that do not involve duplication and 

may be difficult to detect using traditional sequence analysis.   

The diverse fates of duplicate genes and the various ways in which novelty 

appears also reminds us of the undirected nature of evolution. This property of evolution 

is most clear in the unexpected connections between structures of different function in 

organisms.  The panda’s thumb and birds’ flight feathers are connected by descent with 

other structures (wrist bones and insulating material) to which they bear no obvious 

functional affinity. There are similar examples at the molecular level, where existing 

enzymes have been co-opted for new roles. Thus, the ε-crystallin of birds and reptiles is 

actually transcribed from the same gene locus as is lactate dehydrogenase B4 (Hendriks et 

al. 1988; Wistow et al. 1987), while the lactalbumin protein in mammalian milk is 

derived by gene duplication from the bacteriolytic enzyme lysozyme (Graur & Li 2000).  

The differing fates of gene duplicates are a less obvious but equally relevant 

example of evolution’s lack of direction.  Duplicates do not have a predestined function 

at the time of their creation.  Rather, they are raw material which may be co-opted to 

meet a current need of the organism.  If a duplicate by chance undergoes a mutation that 
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allows it to perform some new function, it may enter a path to diversification.  If, on the 

other hand, the organism is in an environment where redundancy is beneficial, the 

duplicate may maintain its current function.  Duplicates may even be maintained to 

increase or control gene dosage.  The fate of a duplicate gene pair is at least in part a 

contingent effect of history.  

As the above discussion of duplication will suggest, undirected does not mean 

random.  The fate of a duplicate depends on both random factors (which genes actually 

are duplicated and what mutations they undergo) as well as selective forces (features of 

the organism which dictate the need for high gene dosage or the usefulness of a new 

enzymatic function).  It is equally important to remember both of these types of factors 

when considering the evolution of the transcriptional regulatory network.  As my analysis 

shows, the evolution of this network is by no means random: useful circuits have evolved 

repeatedly in the network.  At the same time, the addition of new circuits to the network 

must be constrained by network structure.  As I note, a given transcription factor is 

generally not over-represented in any one circuit type, suggesting that transcription 

factors are not forced by their structure into only one part of a circuit (a master regulator 

of a feed-forward loop, say). Thus, the network structure will owe its origins both to its 

evolved features and well as to more random effects such as, again, which of its members 

have recently undergone duplication. Understanding the evolution of novelty within 

complex existing structures such as regulatory networks will be a major challenge in the 

future study of evolution, requiring tools that detect both the relics of past selection as 

well as the signals of historical continuity.
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Appendix: GenomeHistory: a software tool and its application 

to fully sequenced genomes 

 

This appendix has previously appeared in substantially the same form as: Conant, G. C. 
and Wagner, A. (2002)  “GenomeHistory: a software tool and its application to 
fully sequenced genomes”, Nucleic Acids Research, 30: 3378-3386.  Copyright of 
the appendix is therefore retained by the Oxford University Press, and it is used 
here with permission. 
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Abstract 

We present a publicly available software tool 

(http://www.unm.edu/~compbio/software/GenomeHistory) that identifies all pairs of 

duplicate genes in a genome and then determines the degree of synonymous and non-

synonymous divergence between each duplicate pair.  Using this tool, we analyze the 

relations between (i) gene function and the propensity of a gene to duplicate, and (ii) the 

number of genes in a gene family and the family's rate of sequence evolution. We do so 

for the complete genomes of four eukaryotes (fission and budding yeast, fruit fly, 

nematode) and one prokaryote (Escherichia coli).  For some classes of genes we observe  

a strong relationship between gene function and a gene’s propensity to undergo 

duplication.  Most notably, ribosomal genes and transcription factors appear less likely to 

undergo gene duplication than other genes.   In both fission and budding yeast, we see a 

strong positive correlation between the selective constraint on a gene  and the size of the 

gene family of which this gene is a member. In contrast, a weakly negative such 

correlation is seen in multicellular eukaryotes. 

Introduction 

That gene duplication is a major force in genome evolution was first pointed out 

forcefully in Ohno’s pioneering book (Ohno 1970). Since then, considerable progress has 

been made in determining how gene duplicates evolve and what role they play in 

organismal evolution (Ferris & Whitt 1979; Force et al. 1999; Iwabe et al. 1996; Li 1980; 

Lundin 1999; Nadeau & Sankoff 1997; Nei & Roychoudhury 1973).  The availability of 

complete genome sequences has not only made it clear that genomes are replete with 
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duplicate genes, but has also spawned new and varied avenues of research. These include 

studies of the fate of gene duplicates produced in a genome duplication (Wolfe & Shields 

1997) and of the production and distribution of pseudogenes (Harrison et al. 2001; 

Seoighe & Wolfe 1998).  Further research has focused on estimates of the rate at which 

gene duplications occur (Lynch & Conery 2000) and on the distribution of gene family 

sizes in genomes (Gerstein 1997; Huynen & van Nimwegen 1998; Qian et al. 2001), 

which was found to obey a power-law.   

Through this report and through an accompanying web site 

(http://www.unm.edu/~compbio/software/GenomeHistory), we make public a flexible 

and portable tool that allows one to extract  the number of non-synonymous nucleotide 

substitutions per nucleotide site (Ka) and the number of synonymous nucleotide 

substitutions per nucleotide site (Ks) for all gene duplicates in a genome from information 

on coding regions contained in FASTA files.  With suitable precautions, Ks can be used 

to estimate the time that elapsed since a gene duplication.  The ratio Ka/Ks is an 

enormously useful quantity in gauging the selective constraint a given sequence pair is 

subject to (Li 1997).  We have named our tool GENOMEHISTORY. It relies on existing 

algorithms, but uses user-configurable parameters to automate the analysis of large 

datasets with minimal user input.   

Below, we use GENOMEHISTORY to examine patterns of gene duplication in 

five fully sequenced genomes.  Several genome sequencing consortia have begun this 

task in their original reports published with the genome sequences (Rubin et al. 2000).   

Extending this and other work (Kondrashov et al. 2002; Lynch & Conery 2000), we here 

address three questions:  (i) Do genes of different functions differ in their propensity to 
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undergo duplication? (ii) Do selective constraints differ among duplicate genes with 

different functions? (iii) Does the selective pressure acting on a gene depend on the 

number of its duplicates? 

Materials and Methods 

Sequence Analysis: GENOMEHISTORY pre-screens a genome for similar amino acid 

sequences using gapped BLASTP (Altschul et al. 1997), then carries out a global 

alignment of promising candidates using CLUSTAL (Thompson et al. 1994), and 

subsequently estimates Ka and Ks, the number of non-synonymous and synonymous 

mutations per non-synonymous and synonymous site on DNA, respectively (Li 1997). 

We analyzed five genomes with GENOMEHISTORY: those of the yeasts 

Saccharomyces cerevisiae (Goffeau et al. 1996) and Schizosaccharomyces pombe (Wood 

et al. 2002), the fruit fly Drosophila melanogaster (Adams et al. 2000), the nematode 

Caenorhabditis elegans (The C. elegans Sequencing Consortium 1998) and the 

bacterium Escherichia coli (Blattner et al. 1997).  For each genome, we obtained the 

complete set of protein sequences and corresponding nucleotide sequences from sources 

listed in the above references.  We considered protein pairs for further analysis if their 

similarity was greater than indicated by the following BLAST E-value thresholds. E<10-8 

(yeasts),  E<10-10 (Drosophila),  E<10-10 (C. elegans) and E< 10-7 (E. coli). The 

differences in E-value thresholds reflect a correction accounting for varying numbers of 

pairwise comparisons due to different genome sizes. After globally aligning candidate 

duplicates, we retained all gene pairs with more than 40% amino acid similarity over the 

entire alignment.  In addition, we required at least 100 aligned amino acid residues for S. 

cerevisiae, S. pombe, Drosophila, and C. elegans, and 70 aligned residues for E. coli.  
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For each of the retained gene pairs, we calculated Ka and Ks. This calculation is 

performed in GENOMEHISTORY by maximum likelihood estimation using our own 

implementation of the codon-based models of sequence evolution proposed by Muse and 

Gaut as well as Goldman and Yang (1994; 1994).  The computation is often referred to as 

Yang and Nielsen’s method (2000).  Our routine produces results very similar to Yang 

and Nielsen’s implementation of the model in the PAML package. The likelihood 

maximization is performed using two different computational methods: Powell’s routine 

(Press et al. 1992) to find the ratio Ka/Ks as well as the transition/transversion ratio, and 

Yang's method (2000) to find branch lengths. The latter uses a modified Newton’s 

method (Press et al. 1992).  

To increase the proportion of true duplicates in our analysis, we report results 

only for gene pairs where Ka<0.75.  In our analysis of evolutionary rates, we further 

restrict ourselves to duplicates with Ks<3 (in addition to Ka<0.75) and Ka/Ks<1.  In 

addition, we excluded all pairs with Ka< 10-4  or Ks< 10-4. (Such pairs had either no non-

synonymous or no synonymous substitutions).    

Because of their potentially unusual pattern of sequence evolution, we also 

wished to highlight and exclude transposon-related genes from our analysis. In E. coli, 

this is easily done because such genes carry a distinct annotation. In S. cerevisiae we 

screened for transposon-related genes (Fig. 15) by using BLASTP to identify all genes 

similar at E< 10-17 to reverse transcriptase (GenBank protein sequence ID  AAA91746.1) 

or the GAG/POL family (based on similarity to gene YFL002W-B).  For S. pombe, we 

used Genbank gene descriptions to filter transposon-related genes.  In C. elegans, we 

used similarity to the sequence with GenBank sequence ID NP_502686.1 as the criterion.  
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(In this case, we excluded only genes with BLASTP E< 10-77, because lowering this 

threshold led to inclusion of genes with other annotations.).  Available Drosophila genes 

are already filtered for transposons only one annotation indicated transposase activity, 

and there were no large (>20 member) gene families related to transposable elements, as 

in other organisms. We used the list of Drosophila transposons from 

http://flybase.bio.indiana.edu/transposons/lk/melanogaster-transposon.html as a final 

filter, which removed only a single gene pair.  

Annotations: For genome-scale analyses, manual assignment of genes to functional 

categories based on their annotations is possible in principal (Chervitz et al. 1998), but 

prohibitive in cost. We thus took to an automated approach. To study the distribution of 

gene duplicates in different functional categories, we obtained annotations for the yeasts, 

fruit fly, and nematode genomes from the Gene Ontology (GO) database (The 

GeneOntology Consortium 2000) (http://www.geneontology.org/).  The GO database is 

divided into three high-level annotation groups: Cellular Component, Biological Process, 

and Molecular Function.  We selected 10 functional categories from different levels of 

the GO hierarchy, mainly from the “Biological Process” annotation group (Ribosomal 

proteins and transcription factors were identified from the Molecular Function group, and 

the cytoskeletal genes from the Cellular Component group).  We therefore find it helpful 

to view these annotations as primarily “pathway-based”, as opposed to the more 

biochemical “Molecular Function” annotations.   

To prevent single genes from falling into multiple categories, we used an exclusion 

scheme, whereby genes assigned to specific categories (such as transcription factors and 

ribosomal proteins) were excluded from more general categories (such as metabolism).   
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Although requiring genes to fall only into a single pathway does not always match the 

more complex realities of gene function, we impose this requirement for two reasons.  

Firstly, we chose annotations at a high enough level that most genes would be seen as 

fitting best into a single category.  For instance, although some actin genes can be placed 

into the cell cycle category due to their role in cytokinesis, they fit better into the 

cytoskeletal category.  Secondly, allowing genes to occur in more than one category can 

result in the artefact of observing that different functional classes of genes show different 

propensity to undergo duplication, when these differences are due to a single underlying 

cause..  For instance, genes encoding transcription factors are less likely to have  multiple 

duplicates than other genes.  Including transcription factors in the “cell cycle” category  

would then falsely indicate that all genes important for the cell cycle also have a reduced 

propensity to duplicate.  

Instead of allowing genes to occur in multiple categories, we have used the “Molecular 

Function” annotations in the GeneOntology database to ask whether genes with multiple 

molecular functions differ from those with a single molecular function in their propensity 

to duplicate.  Using the 34 top-level “Molecular Function” annotations, we divided the 

genes of the four eukaryotes into two categories:  those with a single top-level function 

annotation and those with more than one such annotation.  While this approach has many 

obvious imperfections, it serves as an automatable first approximation to address the 

above question.  We then divided all duplicate genes into those with a single duplicate 

and those with more than one duplicate.  For each of these two groups we determined the 

proportion of genes that had only one functional annotation.  Although the multiply-

duplicated Drosophila and C. elegans genes were more likely to have single annotations 
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than expected by chance (P<0.01), the difference was small (Drosophila: fraction of 

genes with single functional annotations: all genes/ multiply-duplicated genes=0.71/0.75; 

C. elegans: fraction of genes with single functional annotations: all genes/multiply-

duplicated genes=0.66/0.70). No such difference was observed for multiply duplicated 

genes in the other genomes, or for any singly duplicated genes (results not shown).  This 

suggests that our strategy of restricting each gene to be in only one functional pathway 

did not substantially bias our results.   

For S. pombe, transcription factors and ribosomal proteins were not specifically annotated 

in GO.  We therefore used the GenBank gene description tables 

(http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/euk.html) to identify these genes.  Genes 

were not specifically annotated as cytoskeletal elements in either set of annotations used 

for this organism and this annotation category is thus not included in our analysis of S. 

pombe.      

The K12 strain of E. coli is not included in the GO database. We thus obtained 

annotations from the University of Wisconsin website (http://www.genome.wisc.edu/) 

and slightly modified the 23 categories used by the sequencing center to yield 19 

functional categories (Fig. 13e).    

 

Availability, implementation, and validation of GenomeHistory 

GENOMEHISTORY is available from our website, 

(http://www.unm.edu/~compbio/software/GenomeHistory) and includes HTML 

documentation (also available on-line at 

http://www.unm.edu/~compbio/software/GenomeHistory/GenomeHistory.html). The tool 
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was developed under RedHat Linux 7.1 (kernel version 2.4 and compiler 2.96). Although 

we have no reason to expect difficulties on other UNIX platforms, we cannot guarantee 

that our code will work on untested platforms. However, we expect portability to other 

operating systems, as long as they support perl and stand-alone BLAST.  To facilitate 

modification of the tool by those wishing to overcome platform incompatibilities, we also 

make public the source code of the routines estimating divergence.    

We have compared data obtained with GENOMEHISTORY to data from 

published work and found the results qualitatively identical.  For example, we calculated  

a 'survivorship' curve of youngest duplicates in S. cerevisiae and compared the results to 

those of Lynch and Conery (2000).   The rate of duplication loss was statistically 

identical (exponential decay coefficient d=7.5 for Lynch and Conery vs. 7.23 for 

GENOMEHISTORY). 

To analyze the S. cerevisiae genome’s approximately 6000 genes at a BLASTP E-

value of 1x10-6, a dual 800Mhz Pentium system (Redhat Linux 7.1) needs approximately 

17.5 hours.  BLAST is able to use multiple processors, so this time would be somewhat 

longer on an equivalent single-processor machine.  Which step in the analysis is most 

time-consuming depends on the BLAST threshold selected: if this threshold is very 

stringent (E<10-15), the maximum likelihood estimations in step 3 dominate, but for more 

permissive thresholds, the pairwise sequence alignments by CLUSTALW (step 2) 

dominate. 
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 The input to GENOMEHISTORY consists of two files in FASTA format, one 

containing all protein sequences to be analyzed, and the other the nucleotide sequences 
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Figure 13: Distribution of genes among functional categories for five organisms.  Genes were divided 
into three groups: single-copy genes, genes with one duplicate and genes with more than one (multiple) 
duplicates.  Proportions significantly different from the overall distribution at a Bonferroni significance 
level of 0.05 are marked with arrows.   A: S. cerevisiae (2077 total genes).; B: S. pombe (2298 total 
genes); C: Drosophila (2181 total genes); D: C. elegans (3417 total genes); E: E. coli (2609 total 
genes) 
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corresponding to these proteins.  GENOMEHISTORY produces an output file (in tab-

delimited text format) that contains Ks and Ka estimates for each sequence pair that meets 

the analysis criteria.  GENOMEHISTORY also generates an error file logging 

unexpected results that inevitably occur when comparing millions of gene pairs.  

To allow testing of a GENOMEHISTORY installation, the GENOMEHISTORY website 

includes a small test dataset containing the first few dozen genes of the S. cerevisiae 

nuclear genome, as well as sample output from our installation.    

Results 

What does GenomeHistory do? Comparing all gene pairs in a genome requires 

considerable computational effort. To eliminate obviously unrelated genes rapidly and to 

restrict computationally costly divergence estimates only to similar genes, our tool 

analyses genomes in three distinct stages. (1) Identification of potentially interesting gene 

pairs using the BLAST sequence similarity search algorithm (Altschul et al. 1990); (2) 

Alignment of the pairs identified in (1) using an exact alignment program (CLUSTAL-

W,  Thompson et al. 1994); (3) Calculation of the Ks and Ka values for those aligned 

sequences whose pairwise similarity is above a user-specified threshold.  

For the first step, BLAST analysis, GENOMEHISTORY uses the Washington University 

implementation of gapped BLASTP  (available from http://blast.wustl.edu/) for an initial 

comparison of protein sequences provided in a FASTA file.  BLASTP compares 

sequences very quickly, allowing us to eliminate highly dissimilar gene pairs rapidly. 

This reduces the number of further comparisons to a manageable value. Through the 

BLASTP E-value (Altschul et al. 1990; Altschul et al. 1997) we allow the user to tune 

the similarity threshold below which gene pairs are eliminated. We suggest a relatively 
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liberal threshold choice, such as E>1x10-7, deferring the stringent removal of sequence 

pairs to step two. 

In this second step, any two protein sequences deemed promising by the BLAST 

analysis are aligned using CLUSTAL-W (ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalW/) and 

the default BLOSUM 62 matrix. Since only pairs of sequences are compared, each 

alignment will be computationally exact.  Using these alignments, sequence pairs go 

through an additional step of screening before Ks and Ka are estimated.  They must have 

(i) sequence identity in a minimal, user-specified number of residues, (ii) a minimal user-

specified length for each sequence, and (iii) a minimal user-specified number of residues 

aligned at non-gap positions. This final criterion is required because it is possible to align 

even two long sequences such that each sequence has very few residues aligned with non-

gap residues in the other sequence.  

 In the third step, GENOMEHISTORY calculates a nucleotide alignment 

corresponding to the obtained protein alignment for the sequence pairs left after steps 1 

and 2.  The required DNA sequence information is obtained from a sequence file 

containing nucleotide sequences for all analyzed genes in FASTA format. This alignment 

is then used to calculate Ks and Ka via a computationally costly but unbiased maximum 

likelihood algorithm. 

Distribution of duplicates by function.  The most basic questions about the 

distribution of gene duplicates with respect to gene functions are these: Are genes with 

one duplicate over-represented or underrepresented in any of the major functional 

annotation categories? Does the same hold for genes with multiple duplicates? The 

simplest and crudest way to address these questions is via χ2 goodness-of-fit tests to 
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evaluate the null-hypothesis that the proportion of genes with single (multiple) duplicates 

in different functional categories is identical to the overall number of genes in these 

categories.  Except for genes with single duplicates in Drosophila  (P=0.040) and in C. 

elegans (P=0.133), this null-hypothesis must be rejected at P<0.01 for singly and 

multiply-duplicated genes in all genomes studied. Genes in different functional categories 

are thus not equally likely to undergo duplication. We now analyze the observed patterns 

of deviation in detail. 

 To determine which functional categories had an over- or under abundance of 

duplicates, we applied a two-tailed binomial ("exact") test.  To perform this test, we first 

calculated the number ni  and fraction pi of all annotated genes that fell into each 

functional category i.  For each i, we then tested the null-hypothesis that the observed 

number of (singly or multiply) duplicated genes in functional category i follows a 

binomial distribution with the same parameter pi.  For the yeasts, fruit fly, and nematode, 

the analysis involved making 10 hypothesis tests (1 per category). E. coli has 19 

functional categories making 19 such tests necessary.  We used a Bonferroni correction 

(Sokal & Rohlf 1995) to ensure an overall type I error rate (false rejection of the null 

hypothesis) of 5%.  Proportions significantly different from the overall distribution are 

marked with arrows on figure 13.   

In the yeasts, fruit fly and nematode, the most conspicuous patterns regard 

ribosomal protein genes. (The E. coli genome is not annotated in a directly comparable 

way). Ribosomal genes with multiple duplicates are underrepresented (P<0.0028) in all 

but the S. pombe genome (P=0.24). We speculate that this general pattern is due to the 

high expression level of these genes, and the resulting strong deleterious effects of 



 

 87

changes in gene dosage.  In 

contrast to this pattern, 

ribosomal protein genes with 

one duplicate are over-

represented in both yeasts.  For 

S. cerevisiae, this observation, 

which has also been reported 

by Planta and Mager (1998), is 

probably due to an ancient 

genome duplication that 

occurred approximately 100 

Myrs ago (Wolfe & Shields 

1997). Gene dosage effects may have prevented the elimination of these duplicates from 

the budding yeast genome. Because the common ancestor of budding and fission yeast 

probably lived before the S. cerevisiae genome duplication (Wood et al. 2002), it is 

unlikely that overrepresentation of ribosomal duplicates in fission yeast reflects the same 

genome duplication.  However, it is tempting to speculate that fission yeast has 

undergone its own genome duplication. 

Energy metabolism (in S. cerevisiae and E. coli) and transport genes (in both 

yeasts and E. coli) show markedly higher proportions of duplicates, which may reflect an 

historical imprint of the chemically diverse environments these microbes encountered in 

their evolutionary history. In  S. cerevisiae, the presence of a large gene family of 17 

annotated hexose transporters partly accounts for the expansion of transport-related 
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Figure 14: Average Ka/Ks for genes in different functional 
categories for S. cerevisiae, S. pombe, Drosophila, and C. 
elegans.  Blanks indicate cases where no duplicates met the 
selection criteria (Ks<3, Ka<0.75, Ka/Ks<1) 
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genes. Yeast grown in a glucose-limited laboratory environment can undergo multiple 

duplications of hexose transporters in as few as 450 generations (Brown et al. 1998). This 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90

A) S. cerevisiae 

Gene Family Size and Selective Constraints

K
a/

K
s

Gene Family Size

Non-Transposon
Transposon-Related

Seripauperins

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

B) S. pombe 

Non-Transposon
Transposon-Related

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

C) D. melanogaster 

Non-transposon
Transposon-Related

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

D) C. elegans 

Non-transposon
Transposon-Related
Major Sperm Protein

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

E) E. coli 

Non-transposon
Transposon or Plasmit

 

Figure 15: Statistical association between the number of members of a gene family and selective 
constraints on sequence evolution, as indicated by the ratio Ka/Ks averaged over all family members.  
A: S. cerevisiae  Seripauperin genes are highlighted based on their sequence similarity (BLASTP E< 
10-17) to ORF YJL223C; B: S. pombe;  C: Drosophila;  D: C. elegans  major sperm family proteins 
highlighted based on similarity to gene MSP-36 (C04G2.4)  (BLASTP E < 10-6);  E: E. coli; 
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raises the question whether the observed duplicates in the yeast genome are due to the 

long history of cultivating yeast in the laboratory under similar conditions. This seems 

unlikely, however, because only 6 of these transporters seem to have been duplicated 

within the last 10Myrs (Ks<0.11, Wagner 2001). 

Several patterns of duplication are specific to only one of the taxa we analyzed. 

The largest deviation from expected frequencies of duplicates in Drosophila is the over-

abundance of protein metabolism genes with many duplicates. 28 of the 64 genes in this 

group - sufficient to explain the deviation - have kinase activity. The presence of many 

duplicated protein kinases in Drosophila and other metazoans has been previously 

described by other authors (Chervitz et al. 1998; Rubin et al. 2000; Suga et al. 1999).   

C. elegans shows an overabundance of proteins with multiple duplicates 

annotated as cell-cycle proteins. This appears to be the result of numerous duplicates of 

histone genes (Roberts et al. 1987). For instance, there are more than 20 gene duplicates 

with strong similarity to histone H3 in C. elegans, but only two in Drosophila, three in S. 

cerevisiae, and five in S. pombe.   

Do genes with different functions show different evolutionary constraints? To 

address this question, we determined the average ratios of Ka/Ks for all duplicates in an 

annotation class, and assessed significant differences via a one-sample t-test.  In neither 

E. coli, C. elegans, nor Drosophila did any functional categories evolve at rates 

significantly different from the average.  In S. cerevisiae, the metabolism genes showed 

significantly slower evolution (P=0.003), while in S. pombe the ribosomal protein genes 

evolved significantly more slowly (P=0.0006).  This paucity of significant results is 

unsurprising when one considers the high levels of variance in Ka/Ks within categories. 
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Most variation in Ka/Ks occurs within categories, not among them. Interestingly, the 

average Ka/Ks ratio in Drosophila and C. elegans duplicates is higher in almost all 

categories than in the yeasts (Figure 14).    

Do evolutionary constraints correlate with gene family size?  Figure 15 shows 

Ka/Ks (averaged over members of a gene family) plotted against the number of duplicates 

a gene has. Both yeasts show a positive correlation between Ka/Ks and the number of 

duplicates (S. cerevisiae: Pearson’s r=0.397; Spearman’s s=0.508,  P<0.0001; S. pombe: 

Pearson’s r=0.533, Spearman’s s=0.511, P<0.0001 for both).  In S. cerevisiae, removing 

the seripauperins, a poorly characterized but very large gene family (Viswanathan et al. 

1994) further increases the magnitude of these associations (Pearson's r: 0.591; 

Spearman's s=0.561).    

Perhaps surprisingly, both C. elegans and Drosophila show a negative correlation 

between the number of duplicates and the Ka/Ks ratio (C. elegans: Pearson’s r: -0.122, 

Spearman’s s: -0.073, P<0.0001; Drosophila: Pearson’s r: -0.116, P<0.0001 and 

Spearman’s s: -0.061, P=0.017). Both associations are weak in magnitude but significant 

because of the sheer number of observations.  Finally, E.  coli shows no significant 

association between Ka/Ks and the number of gene duplicates.   

Discussion 

Caution is necessary in applying any automated software tool to analyze the 

evolutionary history of genomes. The reason is that choice of analysis parameters by an 

investigator can critically influence results. We had to make such choices not only in the 

assignment of genes to categories, but also in setting similarity thresholds for including 

gene pairs. For instance, we deliberately chose a conservative approach, admitting only 
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highly similar gene pairs to our analysis.  This may explain why some statistical patterns 

detected in other analyses, e.g., the expansion of certain regulatory gene families in fruit 

fly and nematode (Chervitz et al. 1998; Rubin et al. 2000), have not been detected here.  

Their expansion occurred so long ago that individual gene family members may have 

become too dissimilar to be detected in a conservative assay. On the other hand, the 

advantage of our conservative approach is that detected patterns are less likely to be 

spurious.  

A number of evolutionary patterns found here may be easily explained. They 

include the overrepresentation of duplicates in transport and metabolic genes in the 

microbial genomes, as well as a general under-representation of ribosomal protein genes 

with multiple duplicates. Dosage effects may make it difficult to maintain duplicate 

ribosomal proteins in a genome, unless, as in budding yeast, a whole-genome duplication 

has duplicated all of the proteins at once.  Some of the patterns we see have been 

observed independently by others, which adds to our confidence in them. They include 

the amplification of duplicates related to hexose transport in yeast (Brown et al. 1998), as 

well as amplification of the histone gene family in C. elegans (Roberts et al. 1987), and 

the kinase gene family in Drosophila (Chervitz et al. 1998; Rubin et al. 2000; Suga et al. 

1999).  Such patterns suggest that the rate of gene duplication is by no means 

homogenous across the genome. Rather, this rate is affected by both biochemistry and 

cell biology  (as illustrated by how dosage effects of highly expressed genes influence 

duplication probability) as well as by conditions specific to particular organisms and their 

environments (for instance in the case of the yeast hexose transporters). 
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 Our analysis also considered selective constraints specific to gene families, as 

indicated by the ratio of Ka/Ks. While very few significant differences occur among 

functional categories, we observed higher Ka/Ks ratios (weaker constraints) in the two 

multicellular eukaryotes relative to the microbial eukaryotes. This trend might reflect a 

previously reported stronger relaxation of Ka/Ks shortly after duplication in higher 

organisms (Lynch & Conery 2000).  

Striking taxon-specific differences exist in the association between selective 

constraint (Ka/Ks) and gene family size. E. coli shows no such association, the microbial 

eukaryotes show a highly positive association, and the higher eukaryotes show a weakly 

negative (but highly significant) association. The most straightforward explanation of the 

correlation seen in the yeasts is that large gene families "buffer" the effect of mutations in 

one of their members and thus allow a higher amino acid substitution rate. That this 

pattern is not observed in the many-celled eukaryotes is in line with population genetic 

arguments showing that only very large populations (as are likely to occur in yeasts) can 

sustain such buffering through redundancy (Wagner 2000c). In addition, the manifold 

greater possibilities for tissue-specific expression of duplicates in the multicellular 

organisms may prevent duplicates in large families from experiencing relaxed 

constraints.   

Complementary data further supports a relation between gene family size and 

buffering for budding yeast. Among 540 genes with one or more duplicates that meet our 

criteria (Ks<3, Ka<0.75, Ka/Ks<1), only 18 are known to be essential in yeast (as 

indicated by the lethality of a synthetic-null mutation). Moreover, none of these 18 genes 

have more than 5 duplicates  (Winzeler et al. 1999). (Previous analysis had found four 
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essential genes with duplicates Winzeler et al. 1999). We also observe, anecdotally, that 

no budding yeast gene with more than 9 duplicates has a functional annotation in the 

gene ontology database (The Gene Ontology Consortium 2000). This indicates the well-

known difficulty of identifying gene functions in large gene families by genetic means. 

However, while such evidence may insinuate a simple explanation for an observed 

statistical pattern, caution is appropriate. First, perhaps as many as half of all yeast gene 

deletions  with no phenotypic effect affect single copy genes, showing that redundancy 

through gene duplication is not all there is to buffering of mutational effects (Wagner 

2000b). Also, highly similar duplicates did not generally show weaker effects in 

synthetic-null mutations in early analyses (Wagner 2000b), although that picture has been 

somewhat revised by larger datasets (Gu et al. 2003, see chapter 3). And finally and most 

importantly, the lack of an association between gene family size and evolutionary 

constraint in E.coli is squarely at odds with the above interpretation.   

The negative correlation between gene family size and Ka/Ks in the two 

multicellular eukaryotes is more difficult to understand.  We suspect that the Drosophila 

correlation is largely a result of the very small number of large gene families, which 

simply do not show the variation in Ka/Ks that the small gene families do.  Figure 15C 

indicates this, with the very high and low Ka/Ks values all being located among small 

gene families.  The correlation in C. elegans is stronger, and we suspect that there are one 

or more large gene families with specific functions that are driving the relationship.  In 

particular, removing the major sperm protein family (Klass et al. 1984) (which functions 

both in sperm motility and in oocyte signaling Miller et al. 2001; Roberts & Stewart 
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2000) reduces Pearson’s r from –0.122 to –0.093 and  Spearman’s s: from –0.073 to –

0.058, although the significance in each case is unchanged at P<0.0001  (see figure 15D). 

Unfortunately, difficult to explain patterns are still the norm rather than exception 

in analyzing genome evolution. Other such patterns include an under-representation of 

duplicated transcription factor genes (Fig. 13), a large difference in numbers of histone 

genes between nematode and fruit fly, and the disproportionately large major sperm 

protein family of the nematode. However, such unexplained patterns make clear that 

genome sequencing projects have accomplished something very important. They have 

opened new frontiers of inquiry.  
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