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Convergence in nucleotide composition (CNC) in unrelated lineages is a factor potentially affecting the performance
of most phylogeny reconstruction methods. Such convergence has deleterious effects because unrelated lineages
show similarities due to similar nucleotide compositions and not shared histories. While some methods (such as
the LogDet/paralinear distance measure) avoid this pitfall, the amount of convergence in nucleotide composition
necessary to deceive other phylogenetic methods has never been quantified. We examined analytically the relation-
ship between convergence in nucleotide composition and the consistency of parsimony as a phylogenetic estimator
for four taxa. Our results show that rather extreme amounts of convergence are necessary before parsimony begins
to prefer the incorrect tree. Ancillary observations are that (for unweighted Fitch parsimony) transition/transversion
bias contributes to the impact of CNC and, for a given amount of CNC and fixed branch lengths, data sets exhibiting
substantial site-to-site rate heterogeneity present fewer difficulties than data sets in which rates are homogeneous.
We conclude by reexamining a data set originally used to illustrate the problems caused by CNC. Using simulations,
we show that in this case the convergence in nucleotide composition alone is insufficient to cause any commonly
used methods to fail, and accounting for other evolutionary factors (such as site-to-site rate heterogeneity) can give
a correct inference without accounting for CNC.

Introduction

Since phylogenetic relationships cannot be ob-
served, it is impossible to directly verify the accuracy
of phylogeny reconstructions. Because of this difficulty,
it is of interest to discover conditions in data that can
be demonstrated to cause phylogeny reconstruction
methods to fail. One approach has been to specify a
model phylogeny and a substitution model incorporating
the factor of interest and then show that data generated
from that phylogeny result in incorrectly inferred rela-
tionships. This demonstration can be done analytically
for simple cases and some phylogeny reconstruction
methods (e.g., Felsenstein 1978), but it more often re-
quires the use of computer simulation (e.g., Nei 1991;
Kuhner and Felsenstein 1994; Huelsenbeck 1995;
Schöniger and von Haeseler 1995).

For DNA sequence data, several evolutionary fac-
tors have been discovered that can potentially mislead
phylogeny estimation methods. Examples of such fac-
tors include transition/transversion bias (Kimura 1980;
Wakeley 1993), heterogeneity in substitution rates
among lineages (Felsenstein 1978), heterogeneity in
substitution rates among sites within a nucleotide se-
quence (Navidi, Churchill, and von Haeseler 1991;
Reeves 1992; Sidow and Steel 1992; Yang 1993), non-
independence of sites within a gene (Goldman and Yang
1994; Muse 1995, 1996; Schöniger and von Haeseler
1995), and nonstationarity of nucleotide frequencies
across lineages (Loomis and Smith 1990; Burggraf, Stet-
ter, and Woese 1992; Hasegawa and Hashimoto 1993;
Lockhart et al. 1994; Galtier and Gouy 1995, 1998).
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Lockhart et al. (1994) presented three compelling
examples in which they postulated that convergence in
nucleotide composition (CNC) in independent lineages
led parsimony, as well as methods based on traditional
substitution models, to prefer an incorrect tree, namely
the tree placing taxa with similar nucleotide composi-
tions together. LogDet (Lake 1994; Steel 1994) was the
only transformation of those tested that resulted in a
correct phylogenetic inference. Relatively few other cas-
es have been found in which CNC has been identified
as a problematic factor, although Foster and Hickey
(1999) suggest that it may be the cause of misleading
inferences for animal phylogenies when using all mi-
tochondrial protein-coding sequences. There are at least
two plausible explanations for this paucity of examples.
First, if changed nucleotide composition is inherited (fig.
1A) rather than acquired by convergence (fig. 1B), one
might expect phylogeny methods such as parsimony to
prefer the correct tree more strongly than they should.
Thus, whether nonstationarity in nucleotide composition
is a problem would depend on the relative frequency in
nature of inherited versus convergent similarity in nu-
cleotide composition. This explanation is rather difficult
to investigate, as it requires ascertaining relative fre-
quencies of inherited composition versus CNC in nature.
Second, even if convergent similarity in nucleotide com-
position is common, whether it is a problem for phy-
logeny methods depends on the strength of the conver-
gence and how CNC interacts with other evolutionary
factors. In this paper, we instead concentrate on this sec-
ond explanation, using analyses of four-taxon phyloge-
nies to obtain a feeling for the amount of CNC required
to mislead phylogeny methods, especially parsimony.
We also present a reexamination of one of the Lockhart
et al. (1994) examples using computer simulation to
show that other factors are at work in these data, and
CNC alone does not provide a satisfactory explanation
for the failure of the phylogeny methods examined.
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FIG. 1.—Four-taxon trees depicting different ways in which dif-
ferences in G1C composition among the tip sequences can accrue. In
all cases, it is assumed that an increase in the frequency with which
G’s and C’s are recruited into sequences in the event of a substitution
occurs at some point in time, and this increased propensity continues
and is inherited by descendant lineages following speciation events. A,
The increase in G and C substitutions begins in the common ancestor
of sequences 1 and 2 and is inherited in these two lineages, resulting
in sequences 1 and 2 having higher G1C compositions than sequences
3 and 4. B, The increase occurs independently in the lineage leading
to sequence 1 and the lineage leading to sequence 3. For purposes of
the simulations, which all used tree B as the model tree, the branch
length (d) was identical for all branches (edges) except for the two
internal segments immediately descended from the root node, for
which the length was d/2.

Convergence in Nucleotide Composition in Four-
Taxon Trees

The term ‘‘nucleotide composition’’ can have at
least two distinct meanings. It can refer to the nucleotide
pool available for substitution or to the observed pro-
portions of nucleotides in a particular sequence or ge-
nome. Both have been termed ‘‘equilibrium frequen-
cies,’’ since all commonly used substitution models
(with the exception of the model underlying the LogDet/
paralinear distance measure) assume that the nucleotide
composition is stationary (i.e., does not change from
lineage to lineage across the tree). We use the term
‘‘base frequencies’’ to refer to the substitution pool rel-
ative frequencies, but we allow them to change from
lineage to lineage following Yang and Roberts (1995)
and Galtier and Gouy (1998). When there is a change
in substitution pool base frequencies, it takes some time
before the observed nucleotide composition again reach-
es equilibrium. This lag is exacerbated by strong site-
to-site rate heterogeneity, which leaves many sites un-
changed for long periods of time. The appendix contains
formulas for determining the expected nucleotide com-

position at some arbitrary time t following a change in
base frequencies for models with and without the in-
corporation of rate heterogeneity.

In this section, we examine the question of how
much CNC is required to mislead parsimony in the four-
taxon case by using the probabilities of parsimony-in-
formative patterns to define the region of statistical in-
consistency for parsimony (i.e., the region in which par-
simony would converge on an incorrect tree given an
infinite amount of data). The model tree is that in figure
1B, consisting of two ‘‘biased’’ branches and three ‘‘un-
biased’’ branches (the central branch comprises both
segments attached to the root node). Because short in-
ternal branches in four-taxon trees present the greatest
difficulties for phylogeny reconstruction, the length of
the central branch was varied independently of the four
peripheral branches. Branch lengths are given in terms
of the expected number of substitutions per site (d) un-
less otherwise indicated. The K2P model (Kimura 1980)
was used for unbiased branches, and the model em-
ployed for biased branches was the T92 model (Tamura
1992; Galtier and Gouy 1998). The bias introduced
along the two biased branches involved increasing the
frequency of both G and C by an amount d (i.e., pG 5
pC 5 0.25 1 d, pA 5 pT 5 0.25 2 d). The probability
of observing any of the four bases at the root node was
assumed to be 0.25, in accordance with the K2P model
employed for the central branch containing the root.

With a tree and a substitution model thus speci-
fied, it is possible to compute the probability of all
256 data patterns for any given combination of G1C
bias (d), transition/transversion rate ratio (k), and
branch length (d). We need be concerned with only
36 of the 256 possible patterns, 12 of which support
each of the three possible unrooted trees. Let P0 be
the sum of the probabilities of the 12 patterns sup-
porting the true tree and let P1 and P2 be the sum of
the probabilities of the 12 patterns supporting each of
the two incorrect trees. If either P1 or P2 exceeds P0,
then parsimony will tend to choose incorrectly even
with an infinite number of nucleotide sites (i.e., par-
simony is statistically inconsistent).

As expected, for many combinations of branch
lengths and k, increasing G1C bias (d) caused parsi-
mony to become statistically inconsistent (fig. 2). Since
the model tree specified the biased branches to be those
leading to sequences 1 and 3, the tree that placed se-
quences 1 and 3 (tree 1) together was increasingly sup-
ported as the level of bias increased. Tree 0 (the true
tree, placing sequences 1 and 2 together) and tree 1 thus
provided the comparison of interest; tree 2 (placing se-
quences 1 and 4 together) will be ignored hereinafter.
The plots in figure 2 depict the difference between P0
and P1. The region of inconsistency (shaded) is entered
when the surface representing P0 2 P1 dips below 0; it
is in this area that parsimony is expected to prefer tree
1 over the true tree.

It has been suggested by Lockhart et al. (1992) that
statistical inconsistency as a result of CNC occurs in the
four-taxon case only when the internal branch of the
unrooted tree is shorter than the terminal branches. This
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FIG. 2.—Expected performance of the parsimony criterion for differing combinations of d, k, and d, where d represents the expected number
of substitutions per site, k is the transition/transversion rate ratio (the instantaneous transition rate divided by the instantaneous transversion
rate), and d is the magnitude of the increase in the equilibrium frequencies of both G and C (pG 5 pC 5 0.25 1 d, pA 5 pT 5 0.25 2 d) on
biased branches (the dashed lines in the tree depicted in fig. 1B). The performance of parsimony is measured as the difference between the
probability of observing data patterns that support the correct tree and the probability of data patterns that support the ‘‘G1C tree’’ (i.e., the
tree that incorrectly places taxa with increased G1C content together). Shaded portions of the plots represent regions of statistical inconsistency
for parsimony, analogous to the ‘‘Felsenstein Zone’’ in the long-branch attraction problem, since in these regions misleading data patterns are
more probable than patterns supporting the correct tree. A, k equals 1.0, d 5 0.0. B, k equals 1.0, d 5 0.12. C, k equals 1.0, d 5 0.24. D, k
equals 10.0, d 5 0.0. E, k equals 10.0, d 5 0.12. F, k equals 10.0, d 5 0.24.



Nucleotide Composition Effects on Phylogeny 1027

suggests that CNC is a problem related to the long-
branch attraction described by Felsenstein (1978). The
vertical axis in figure 2 represents the length of the cen-
tral branch, while the horizontal axis represents the
length of each of the peripheral branches. Figure 2 dem-
onstrates that, in fact, even if the internal branch is equal
in length to the terminal branches, there exists a level
of G1C bias sufficient to cause parsimony to become
inconsistent, although the level of bias required in such
cases is quite high.

Figure 2 shows that, in general, branch lengths
must be large (.0.5 substitutions per site) for CNC to
cause serious problems for parsimony, even when the
G1C bias is nearly at its maximum possible value (d 5
0.24). CNC is exacerbated by small internal branch
lengths and especially by transition/transversion bias.

Figure 3 repeats the analysis of figure 2, this time
including the discrete gamma distribution of sitewise
relative rates. In this case, we see that the addition of
rate heterogeneity actually decreases the size of the zone
of inconsistency, especially in regions where all branch-
es are long. One might predict that site-to-site rate het-
erogeneity would make matters worse for parsimony
(and any method that does not take it into account),
since high rate heterogeneity implies that change is con-
centrated at fewer sites. This means that variable sites
have a better chance of experiencing multiple hits than
in the rate homogeneity case, leading to greater diffi-
culty in distinguishing true phylogenetic signal from
false signal due to convergence. This would be espe-
cially true if the total amount of accumulated nucleotide
composition bias were held constant. In figure 2, this is
not the case: it is the number of substitutions (branch
lengths) that is held constant, and the greater success of
parsimony can thus be attributed to the fact that change
has been concentrated at a few variable sites, and the
realized nucleotide composition bias is not as great as
that for the rate homogeneity case (where more sites
have undergone at least one change).

Simulation Study

The rigidity of the model tree in the analytical study
makes it difficult to apply the results to real data sets. In
particular, few real data sets follow the assumed perfect
molecular clock, and fewer still have interior nodes so
evenly spaced in time. We therefore used computer sim-
ulation to study the effects of CNC on the ability of par-
simony and other methods to reconstruct the true tree
using the chlorop.phy data set obtained from http://
imbs.massey.ac.nz/Research/MolEvol/Farside/
programs.htm and described in Lockhart et al. (1994).
Lockhart et al. (1994) examined data from the 16S rRNA
gene of chloroplasts (of diverse phylogenetic origins), as
well as the cyanobacterium Anacystis. They showed that
many common phylogenetic reconstruction methods
failed to favor the tree assumed to be correct, which plac-
es all the chlorophyll b–containing organisms together,
separated from the cyanobacterium Anacystis and the
chlorophyll c–containing chromophyte alga Olithodiscus.
The methods that failed were (1) parsimony, presumably

equal-weighted and using unordered character states; (2)
maximum likelihood, using the model described in Fel-
senstein (1993), presumably with the transition : transver-
sion ratio fixed at the default value of 2; (3) neighbor
joining using Jukes and Cantor (1969) distances; and (4)
neighbor joining using Kimura (1980) two-parameter dis-
tances. These methods all placed Euglena between Ana-
cystis and Olithodiscus. Using the LogDet transformation
(in conjunction with neighbor joining) on just parsimony-
informative sites produced the well-corroborated tree in
which Euglena grouped with the other chlorophyll a/b–
containing organisms. Lockhart et al. (1994) concluded
that the relatively low G1C content of Euglena and O-
lithodiscus caused most methods to group them together.

Using PAUP*, version 4.0d64 (Swofford 1998), we
were able to reproduce the results of Lockhart et al.
(1994) on the entire data matrix of eight sequences, but
we reduced the data set to just the sequences from An-
acystis, Olithodiscus, Euglena, and Chlamydomonas for
simplicity. As table 1 shows, reducing the taxon sam-
pling did not affect the general conclusions reached by
Lockhart et al. (1994). All methods examined except
LogDet favored the unrooted tree topology grouping Eu-
glena and Olithodiscus and separating them from Chlo-
rella and Anacystis, which have higher G1C contents
(table 2). The model described by Galtier and Gouy
(1998), hereinafter called the GG98 model, was used to
simulate data according to the tree presumed to be cor-
rect, namely, (Anacystis, Olithodiscus, (Euglena, Chla-
mydomonas)). In essence, the hypothesis tested was that
the process underlying the evolution of the observed se-
quences did not differ from the model of evolution used
in the simulations. The results of the previous section
suggest that the degree of bias present in the Lockhart
et al. (1994) data set is not large enough to mislead
parsimony (or, presumably, other methods) unless other
factors exacerbate its effects. We therefore predicted that
all methods would usually pick the correct tree in the
simulated data sets.

The parameter values used in the simulations were
maximum-likelihood estimates obtained using two in-
dependently written computer programs, each using the
GG98 model. The program EVALpNH, written by Gal-
tier and Gouy, was used to check the results from a
program (GG98) written separately by one of us
(P.O.L.). It is important to note that the incorporation of
CNC makes the model non-time-reversible. In such
models, the maximum likelihood changes with different
rootings, so table 3 presents likelihood scores for all 15
possible rooted topologies for four taxa. The maximum-
likelihood tree under the GG98 model is the ‘‘true’’ tree
(table 3). This result demonstrates that using a model
allowing nucleotide composition to vary across the tree
improves the quality of the estimated tree. The two pro-
grams were in agreement with respect to the parameter
estimates for the maximum-likelihood tree (fig. 4). We
each wrote independent computer programs to simulate
data sets based on these parameter estimates and used
PAUP*, version 4.0d64 (Swofford 1998), to evaluate
each of the 1,000 simulated data sets for the five meth-
ods used by Lockhart et al. (1994) and described above:
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FIG. 3.—Plot of the performance of parsimony as in figure 2, with the addition of site-to-site rate variation modeled as a discrete gamma
distribution with four categories and a (gamma shape parameter) 5 0.2. A, k equals 1.0, d 5 0.0. B, k equals 1.0, d 5 0.12. C, k equals 1.0,
d 5 0.24. D, k equals 10.0, d 5 0.0. E, k equals 10.0, d 5 0.12. F, k equals 10.0, d 5 0.24.
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Table 1
Performance of Various Phylogenetic Inference Methods on the Eight-Taxon Data Set of Lockhart et al. (1994) and
with the Four Taxa Subsequently Used

Method

EIGHT-TAXON DATA SET

Score Correct?

FOUR-TAXON DATA SET

Score Correct?

MP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ML-F84a . . . . . . . . . . . . . . . . . . . . . . . . . . .
ML-F84 (tratio est.) . . . . . . . . . . . . . . . . . .
ML-F84 (shape est.) . . . . . . . . . . . . . . . . . .
ML-F84 (tratio and shape est.) . . . . . . . . .

393
23,158.20339
23,158.19033
23,067.68322
23,065.27760

No
No
No
Yes
Yes

280
22,485.78542
22,485.74291
22,458.67618
22,457.56807

No
No
No
Yes
Yes

ME-JC . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ME-JC (shape 5 MLE)b . . . . . . . . . . . . . .
ME-K2P . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ME-K2P (shape 5 MLE) . . . . . . . . . . . . . .
ME-LogDet . . . . . . . . . . . . . . . . . . . . . . . . .

0.42234
0.60244
0.42693
0.66477
0.43550

No
No
No
No
Yes

0.31589
0.42556
0.32001
0.48482
0.32255

No
No
No
No
Yes

NOTE.—The liverwort, tobacco, rice, and Chlorella sequences were removed to create the four-taxon data set. MP 5 maximum parsimony; ML 5 maximum
likelihood; JC 5 Jukes-Cantor distances; K2P 5 Kimura two-parameter distances.

a Transition/transversion ratio 5 2.0 in ML analyses unless ‘‘tratio est.’’ is specified; rate homogeneity is assumed unless ‘‘shape est.’’ is specified.
b Maximum-likelihood estimate of gamma shape parameters using the same substitution model and assumed discrete gamma distribution with four rate categories.

Table 2
Results of Analysis of Four Taxa from Lockhart et al. (1994) Under Different Inference
Methods

Tree MLa MPb NJ-JCc NJ-K2Pd
NJ-

LogDete

(A, B, (C, D)) . . . . . . . .
(A, C, (B, D)) . . . . . . . .
(A, D, (B, C)) . . . . . . . .

22,486.40247
22,500.71061
22,485.78542

282
294
280

0.31591
0.35009
0.31589

0.32010
0.35590
0.32001

0.32255
0.35478
0.32373

NOTE.—Taxon abbreviations: A 5 Anacystis; B 5 Olithodiscus; C 5 Euglena; D 5 Chlamydomonas. All computations
were performed with PAUP*, version 4.0d64 (Swofford 1998).

a Natural logarithm of maximum likelihood (F84 model, empirical base frequencies and transition/transversion ratio 5
2.0).

b Maximum-parsimony tree length (unordered characters and equally weighted character state transitions).
c Neighbor joining using Jukes-Cantor distances, minimum evolution score.
d Neighbor joining using Kimura two-parameter distances, minimum evolution score.
e Neighbor joining using LogDet distances, minimum evolution score.

equal-weighted parsimony (MP); maximum likelihood
with the F84 model (ML); minimum evolution with
Jukes and Cantor (1969) distances (ME-JC); minimum
evolution with K2P distances (ME-K2P); and minimum
evolution with LogDet distances (ME-LogDet). None of
these methods selected an incorrect tree in any of the
1,000 simulations, suggesting that there is a significant
difference between the model used for simulation and
the actual processes generating the observed sequences.

We repeated the simulations, this time incorporat-
ing discrete gamma rate heterogeneity into the data. The
model used is termed the GG98-G model, as it is iden-
tical to the GG98 model except for the addition of a
gamma shape parameter. Four rate categories were used,
with the mean of each category serving as the relative
rate used in the likelihood calculations. Again, when the
likelihood of each of the 15 possible rooted trees was
computed using the GG98-G model, the maximum-like-
lihood tree was identical to the tree topology assumed
to be true by Lockhart et al. (1994) (table 3). The max-
imum-likelihood estimates of the parameters of the
GG98-G model (fig. 5) were used as the basis of the
simulations; however, this time only the GG98 program
could be used to estimate parameters because EVALpNH
does not include the gamma version of the GG98 model.

In this case, some of the simulated data sets resulted in
incorrect estimates of phylogeny regardless of the meth-
od used. Nevertheless, all of the methods recovered the
correct tree a high percentage of the time, and LogDet
did not outperform the other methods (table 4) when
presented with the true amount of rate heterogeneity (the
maximum-likelihood estimate of the gamma shape pa-
rameter from the original data set, 0.308, was the as-
sumed level of rate heterogeneity in the simulated data).

Discussion

Of the many evolutionary factors affecting the ac-
curacy of phylogenetic inference, CNC is a relative new-
comer, being recognized formally as a problem with the
papers by Lake (1994), Lockhart et al. (1992), and Steel
(1994). The present paper seeks to discover how much
CNC is required before it presents serious problems for
phylogenetic inference methods such as parsimony. The
analytical results presented suggest that extreme com-
binations of substitution rates, transition/transversion
bias, and equilibrium frequencies are required before
parsimony is expected to fail. This is welcome news,
because the situation investigated here represents nearly
the worst-case scenario: nucleotide composition con-
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FIG. 4.—Parameter values used for the simulations using the
GG98 model. These values represent maximum-likelihood estimates
obtained using the GG98 model. Values below branches represent
branch lengths computed using the standard HKY85 model formula
for expected number of substitutions. Note that since the ‘‘equilibrium
frequencies’’ differ for each branch in the GG98 model, the standard
formula no longer reflects the expected number of substitutions, since
the nucleotide composition is nonstationary. The correct formulas for
this case are presented in the appendix. Numbers to the right of each
node (or below taxon names) are the estimated percentages of G1C
for the branch subtending the node. These do not represent the G1C
composition of the sequence at the node, but instead represent the
probabilities of substitution of G’s and C’s over the life span of the
lineage leading up to the node. The estimated value of k in this case
was 3.781608.

FIG. 5.—Maximum-likelihood estimates of parameters obtained
under the GG98-G model. The values below branches and beside nodes
have the same meanings as in figure 4. The estimates for k and the
gamma shape parameter are 4.673279 and 0.307850, respectively.

Table 3
Natural Log of the Likelihood for the 15 Possible Rooted
Trees from Lockhart et al. (1994) for the Galtier and
Gouy (1998) Model With and Without Discrete Gamma
Rate Heterogeneity

Tree GG98a GG98-Gb

((A, B), (C, D)) . . . .
((A, D), (C, B)) . . . .
((A, C), (D, B)) . . . .
(A, (B, (C, D)))c . . . .

22,460.608305
22.460.299516
22,474.811480
22,457.770740

22,430.073634
22,431.704680
22,434.132779
22,428.829561

(B, (A, (C, D))) . . . .
(C, (D, (A, B))) . . . .
(D, (C, (A, B))) . . . .
(A, (C, (B, D))) . . . .
(C, (A, (B, D))) . . . .

22,460.911565
22,460.000532
22,459.423790
22,472.723745
22,473.956835

22,430.073634
22,428.909027
22,429.815718
22,433.514116
22,432.968496

(B, (D, (A, C))) . . . .
(D, (B, (A, C))) . . . .
(A, (D, (B, C))) . . . .
(D, (A, (B, C))) . . . .
(B, (C, (A, D))) . . . .
(C, (B, (A, D))) . . . .

22,474.946236
22,473.359449
22,459.887635
22,460.380030
22,464.581165
22,463.186408

22,434.089933
22,434.039427
22,431.355763
22,431.676526
22,432.304177
22,430.966041

NOTE.—Taxon abbreviations: A 5 Anacystis; B 5 Olithodiscus; C 5 Eu-
glena; D 5 Chlamydomonas.

a Galtier and Gouy (1998) model.
b GG98 model with discrete gamma rate heterogeneity (four rate categories).
c Maximum-likelihood topology for both models.

verging toward a common value in two unrelated line-
ages (the worst-case scenario for the four-taxon problem
would involve increases in G1C in two unrelated ter-
minal lineages and a corresponding decrease in G1C in
the other two terminal lineages). Inherited similarities in
nucleotide composition, on the other hand, will not be
as problematic, as parsimony will tend to estimate trees
correctly, albeit for the wrong reason. The only draw-
back posed by inherited similarities in nucleotide com-
position will be a tendency for parsimony to prefer the
correct tree more strongly than it should, exhibiting a
false degree of confidence in the form of bootstrap or
decay values (Swofford et al. 2001).

Few clear cases have been reported in which CNC
has been thought to derail the phylogenetic inference
process. Of the three cases presented by Lockhart et al.
(1994), two involve 18S rDNA from vertebrates and
COII mtDNA from honeybees. In these two data sets,
we could not find any way to obtain the putative ‘‘cor-
rect’’ tree except by using LogDet/paralinear distances,
as reported by Lockhart et al. (1994). It is notable, how-
ever, that it is necessary to exclude all constant and au-
tapomorphic sites (analyzing only parsimony-informa-

tive sites) to accurately estimate the phylogeny for these
data sets. This suggests site-to-site rate heterogeneity as
the likely culprit; however, taking account of site-to-site
rate heterogeneity using the standard methods fails to
produce a correct estimate. Therefore other, as yet un-
identified, factors must be at work in these data sets.
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Table 4
Results of Simulations Based on Parameter Estimates
Made Using the GG98-G Model

Optimality Criterion Model % Correcta

Maximum parsimony . . . . . .
Maximum likelihood . . . . . . .
Minimum evolution . . . . . . .

Equal weights
F84
JC69
K80
LogDet

94.2
96.2
92.4
91.5
89.8

a Out of 1,000 simulation replicates.

The simulation study reported here represents a test
of the hypothesis that CNC alone, or CNC in combi-
nation with site-to-site rate heterogeneity, is sufficient to
explain the failure of many phylogenetic methods for
the third case presented by Lockhart et al. (1994) (rep-
resented by the chlorop.phy data set). We used a para-
metric bootstrap approach in which parameters were es-
timated from the data using maximum likelihood and
simulations performed using these parameter estimates.
The results show that CNC, either alone or in combi-
nation with site-to-site rate heterogeneity, is insufficient
to account for difficulties found in the original data set.
None of the simulated data sets presented problems for
parsimony or any of the other methods tested (all of
which failed on the original data set).

It is clear that the GG98 model used for the sim-
ulations did not capture some factor important in the
evolution of the actual sequences. One possibility is that
the GG98 model does not allow enough variation in
nucleotide composition across the tree. This model plac-
es some constraints on changes in nucleotide composi-
tion, forcing the frequency of G to equal the frequency
of C and allowing only changes in G1C composition
at the nodes of the tree. It seems unlikely that these two
model constraints can account for the differences seen
between the simulation results and the results from the
original data. First, allowing the composition of G to
differ from the composition of C should not increase the
chances of an artifactual joining of Euglena to Olitho-
discus, since it is the low G1C content in these lineages
that is postulated to have caused problems in the original
data set. Second, allowing nucleotide composition to
vary within lineages should also not increase the chance
of Euglena pairing with Olithodiscus, since all of the
phylogenetic methods that failed on the original data set
view branches as the smallest units making up a phy-
logenetic tree: that is, they cannot, like LogDet, take
account of changes in composition that occur within
branches.

When simulations incorporated both CNC and rate
heterogeneity, a small fraction of the simulated data sets
proved difficult for all methods. This falls short of the
result that would be expected if rate heterogeneity were
the all-important missing factor. Also, we would expect
LogDet to perform well (as it did on the original data
set) compared with the other methods examined. In fact,
LogDet behaves similarly to the other methods, failing
on a small fraction of the simulated data sets (table 4).
These observations indicate the presence of as-yet-un-

known evolutionary factors at work in the evolution of
the actual sequences that are not being modeled by the
simulations.

The phylogenetic methods in common use today
each have their own ‘‘Achilles’ heel,’’ and it behooves
researchers to learn as much as possible about the fac-
tors at work in their data prior to deciding on a method
to use in the final analysis. For example, parsimony’s
primary Achilles’ heel has long been identified as long-
branch attraction (Felsenstein 1978). Maximum likeli-
hood can correct for problems that are identified and
incorporated into substitution models but can be de-
ceived by factors not represented in the model used
(e.g., rate heterogeneity; Gaut and Lewis 1995). This
paper has addressed a potential Achilles’ heel applicable
to most methods of phylogenetic inference and found
that it is perhaps not as great a threat as it was initially
perceived to be. This is not to say that CNC can be
ignored altogether. Figure 3 illustrates that CNC in com-
bination with site-to-site rate heterogeneity and transi-
tion/transversion bias can cause problems even at bio-
logically realistic substitution rates and levels of rate
heterogeneity. For example, in figure 3, one point at
which parsimony is inconsistent is characterized by the
following parameter values: peripheral branch lengths 5
0.8, central branch length 5 0.1, gamma shape 5 0.2,
and transition/transversion rate ratio 5 1.0, with a G1C
difference of 0.12 between biased and unbiased lineages.
These branch lengths and the G1C bias are at the edge
of what is normally observed in actual data sets, but
none are out of the realm of possibility, and the transi-
tion/transversion bias and degree of rate heterogeneity
are not at all extreme. LogDet/paralinear distances pro-
vide a practical means for diagnosing CNC should it be
present in a dosage sufficient to cause problems. A tree
estimated using LogDet that differs from trees estimated
using other methods should prompt an examination of
the data for evidence that other methods are incorrectly
joining taxa with similar nucleotide compositions.

While it is unlikely that any data set can be found
that shows the influence of one and only one evolution-
ary factor, it is nevertheless beneficial to thoroughly an-
alyze sequence data sets in the search for good examples
of the effects of evolutionary factors representing po-
tential pitfalls for phylogeny methods. Equally impor-
tant is the search for new evolutionary factors. It is only
when such evolutionary factors as site-to-site rate het-
erogeneity, transition/transversion bias, evolutionary de-
pendence among sites, and CNC are discovered that
work can begin on creating evolutionary models that
avoid the problems they create.
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APPENDIX

The transition probabilities for the HKY85 model
are

 P 2 p1 j j
2bt 2bt[11P (k21)]jp 1 p 2 1 e 1 ej j1 2 1 2P Pj j

i 5 j
P (t) 5 ij p1 j

2bt 2bt[11P (k21)]jp 1 p 2 1 e 2 ej j 1 2 1 2P Pj j

i ± j, transition
2btp (1 2 e ) i ± j, transversion, j

where pi is the substitution pool frequency of base i, Pi

is the substitution pool frequency of base i’s group (i.e.,
the frequency of either purines or pyrimidines), b is the
instantaneous substitution rate, k is the transition/trans-
version rate ratio, and t is time. The nucleotide com-
position of base j after time t may be found as follows:

(0)p (t) 5 p P (t).Oj i ij
i∈{A,C,G,T}

Thus, the composition of A after time t is

1
(0) 2btp (t) 5 p p 1 p 2 1 eA A A A5 1 2pR

pA 2bt[11p (k21)]R1 e1 2 6pR

1
(0) 2bt1 p p 1 p 2 1 eG A A5 1 2pR

pA 2bt[11p (k21)]R2 e1 2 6pR

(0) 2bt (0) 2bt1 p p (1 2 e ) 1 p p (1 2 e )C A T A

(0)p 2 pR R 2bt5 p 1 p eA A1 2pR

(0) (0)p p 2 p pA R R A 2bt[11p (k21)]R1 e ,1 2pR

which reduces to the formula corresponding to the F81
model, pA 1 ( 2 pA)e2bt when there is no transition(0)pA
bias (k 5 1). More generally,

(0)P 2 Pi i 2btp (t) 5 p 1 p ei i i1 2Pi

(0) (0)p P 2 P pi i i i 2bt[11P (k21)]i1 e .1 2Pi

Following Waddell and Steel (1997), the expected value
of pi(t) when rates vary over sites according to a gamma
distribution can be found by substituting [1 1 (bt/a)]2a

for (k 2 1))/a]}2a for2bte and {1 1 [bt(1 1 Pi

:2bt[11P (k21)]ie

2a(0)P 2 P bti ip (t) 5 p 1 p 1 1i i i1 21 2P ai

2a(0) (0)p P 2 P p bt[1 1 P (k 2 1)]i i i i i1 1 1 .1 21 2P ai

The transition probabilities, as well as pi(t), for the F84
model can be obtained from those of the HKY85 model
by substituting k 1 1 for the quantity 1 1 Pj(k 2 1).
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