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We study how an amino acid residue’s solvent exposure influences its propensity for substitution by analyzing multiple
alignments of 61 yeast genes for which the crystal structure is known. We find that the selective constraint on the interior
residues is on average 10 times that of residues on the surface. Surprisingly, there is no correlation between the overall
selective constraint observed for a protein alignment and the ratio of constraints on interior and surface residues. By
modeling the selective constraint on several amino acid properties, we show that although residue volume and
hydropathy are strongly conserved across most alignments, there is little variation in interior versus surface conservation
for these two properties. By contrast, residue charge (isoelectric point) is less generally conserved when considering the
protein as a whole but shows a strong constraint against the introduction of charged residues into the protein interior.

Introduction

Site-to-site variation in substitution rates in protein-
coding genes has been both a technical challenge (e.g.,
in phylogenetic inference; Reeves 1992; Sidow and Steel
1992; Yang 1993) and a source of biological insight
(e.g., when site-to-site variation in the frequency of nonsy-
nonymous substitutions is used to identify locations of pos-
itive selection; Nielsen and Yang 1998; Yang, Nielsen et al.
2000).

One useful way to think of such site-to-site variation is
in terms of differing selective constraints (Yang, Swanson,
and Vacquier 2000) and the underlying biochemical and
biophysical sources of these differences. An obvious source
of this variation is a residue’s location in the protein’s 3D
structure. Both an amino acid residue’s exposure to solvent
and its secondary structure environment are known to af-
fect its substitution rate (Thorne et al. 1996; Goldman
et al. 1998; Bustamante et al. 2000; Mintseris and Weng
2005; Bloom et al. 2006). Higher solvent accessibility
appears to not only be associated with higher substitution
rates (Goldman et al. 1998) but also specifically with re-
duced selective constraint on nonsynonymous substitutions
(Bustamante et al. 2000; Bloom et al. 2006).

In a previous analysis, we studied how the range of
permissible amino acid substitutions varied among different
types of proteins (Conant et al. 2007). As others had also
found (Tourasse and Li 2000), we concluded that proteins
differed in their relative frequencies of amino acid substi-
tutions. Here, we extend this analysis to determine whether
there are significant differences in substitution patterns
among sites within the same protein due to their varying
exposures to the solvent. We examine both the difference
in overall selective constraint between interior and surface
residues and whether the physical and chemical properties
of the amino acid residues can help to explain this variation
in substitution rates due to solvent exposure.

Methods
Protein Structures

The Protein Databank (PDB; Berman et al. 2000) was
queried for sequences derived from the bakers’ yeast Sac-
charomyces cerevisiae. The sequences from the resulting
structures were then compared with the yeast genome (Gof-
feau et al. 1996), and exact substring matches (allowing for
gaps in the determined structure) were retained. The ex-
posed surface area of each residue was inferred using An-
alytic Surface Calculation (ASC; Eisenhaber and Argos
1993; Eisenhaber et al. 1995). The proportion of total sur-
face exposed (x) was calculated by dividing the above val-
ues by the surface area of the residue in question (measured
in a Gly-X-Gly chain; Chothia 1976).

Sequence Data

Sequence data for homologous genes from eight ge-
nomes related to S. cerevisiaewere obtained from the Yeast
Genome Order Browser (YGOB; Byrne and Wolfe 2005).
Data from five other genomes were also added: Candida
albicans (downloaded from the Candida Genome database;
Jones et al. 2004; Arnaud et al. 2005), Debaryomyces han-
senii (Dujon et al. 2004), Saccharomyces mikatae (Kellis
et al. 2003), Saccharomyces paradoxus (Kellis et al.
2003), and Yarrowia lipolytica (Dujon et al. 2004). Because
of the presence of a whole-genome duplication (WGD) in
S. cerevisiae (Wolfe and Shields 1997; Dietrich et al. 2004;
Kellis et al. 2004), it is overly restrictive to require recip-
rocal best Blast hits to identify orthologs in these five ge-
nomes. Instead, we slightly relax our criterion in cases
where S. cerevisiae has a duplicate from WGD (identified
using YOGB; Byrne and Wolfe 2005) and identify an or-
tholog as the gene giving the best hit in a given genome,
which itself hits either the S. cerevisiae gene in question
or that gene’s paralog from the WGD.

Multiple sequence alignments were generated using
T-Coffee (Notredame et al. 2000) and visually inspected.
After eliminating putative orthologs with poor alignment,
we removed alignments in which less than seven homolo-
gous sequences were retained. The product of these filtering
steps was the set of 61 structure–alignment pairs analyzed
below. Nucleotide alignments were inferred from protein
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sequence alignments and gaps excluded from further
analysis.

The phylogenetic relationships of the yeast species
studied here are reasonably well understood (Kurtzman
and Robnett 2003; Diezmann et al. 2004). However, the
relationship between the phylogeny of a given gene and
the species phylogeny becomes complicated in the presence
of WGD (Scannell et al. 2006, 2007; Conant and Wolfe
2008). For this reason, we chose to individually infer a phy-
logeny for each of the nucleotide alignments studied. These
phylogenies were inferred by maximum likelihood using
PAUP* 4.0b10 (Swofford 2002) under the Hasegawa,
Kishino, Yano model (Hasegawa et al. 1985) with rate
heterogeneity among sites modeled as following a dis-
crete gamma distribution with four categories (Yang 1993,
1994). Both the gamma shape parameter a and the transi-
tion–transversion rate ratio parameter j were estimated by
the built-in numerical maximum likelihood optimization
method of PAUP*.

Toascertainwhether this approach to inferringgenephy-
logenies was likely to bias our analysis, we selected 14 align-
ments that contain no genes with surviving paralogs from the
WGD. The WGD can cause differences between gene and
species phylogenies even in this case, but it is less likely
(though see Scannell et al. 2007). We repeated our analyses
using the presumed species tree (Kurtzman and Robnett
2003; Diezmann et al. 2004). As can be seen in supplemental
figures 1 and 2, Supplementary Material online, our conclu-
sions are generally insensitive to the topology used.

Inferences Using Models of Codon Evolution

We fit the above alignments to three previously de-
scribed models of codon evolution, the MG/GY94 model,
the Linear Combination of Amino acid Properties (LCAP)
model, and the Similarity Groups (SG) model. The first
model was developed by Goldman and Yang (1994) and
is similar to that of Muse and Gaut (1994) (see Conant
et al. 2007 for discussion). The LCAP model makes non-
synonymous substitution rates dependent on weighted com-
binations of the differences between the two residues in
question for five physical and chemical properties (Conant
et al. 2007). Thus, the instantaneous substitution rate for
nonsynonymous codons A and B is given by:

RA;B 5C ! exp
!X5

j5 1

aj ! DjA;B
"
! RnucleotideðA;BÞ: ð1Þ

Here DjA,B gives the difference in the jth property between
the amino acids in question, and Rnucleotide gives the rate of
the nucleotide substitution in question. Values for the ajs
are estimated by maximum likelihood.

As discussed previously (Conant et al. 2007), the five
properties of the LCAP model are not strictly independent.
However, we can test for independent predictive power by
excluding a given property and asking whether a likelihood
ratio test (LRT, see below) indicates that the model fit has
been significantly worsened. For example, although polar-
ity and hydropathy are correlated (Conant et al. 2007), re-
moval of hydropathy from the model while polarity remains

generally worsens the fit of the LCAP model to these data,
but the converse is not true (table 1). Thus, here we use three
amino acid properties (volume, isoelectric point, and hy-
dropathy). For most alignments considered, the removal
of any one of these three properties significantly worsens
the quality of the model fit (table 1).

The SG model is our parameterization (Conant et al.
2007) of a general class of models that divide the amino
acid residues into classes with differing substitution rates
between them (Sainudiin et al. 2005; Wong et al. 2006).
We discuss the details of this model in the Results section.

Effects of Solvent Exposure

To study the effects of solvent exposure on evolution-
ary estimates, we implemented versions of all three models
with independent values of the nonsynonymous substitu-
tions parameters (x for the MG/GY94 model, Iw and Ib
for the SG model, and ajs and C for the LCAP model)
for the surface and the interior residues. Sites in a sequence
follow the first value with a probability that equals the rel-
ative amino acid exposure x described above and follow the
other value with probability 1 $ x. Codons not included in
the structural data were excluded.

Model Significance Tests

Nested models of evolution were compared using like-
lihood ratio tests (LRTs), assuming that twice the difference
in ln-likelihood (2DlnL) follows a chi-square distribution
with the degrees of freedom being equal to the number
of extra parameters in the alterative model (Sokal and Rohlf
1995).

For example, to test if the ajs for the interior and surface
residues (aijand asj , respectively) in the LCAP model were
significantly different, we compared an eight-parameter
model where aij 6¼ asj for all j to a seven-parameter model
where one property kwas given the same surface and interior
constraint (aik5ask). The significance of the improvement in
likelihood (2DlnLstruct-prop) for the eight-parameter model
was inferred with an LRT (see table 1 for full details of
the LRTs conducted).

Results
Comparison of Proteins with Different Relative
Exposures

One method to detect differences in selective con-
straints between interior and surface residues is to calculate
the correlation between the whole-gene average selective
constraint xg and a gene’s average residue exposure to
the solvent E. Note that xg is the maximum likelihood es-
timate of the ratio of nonsynonymous-to-synonymous sub-
stitutions per site (Ka/Ks) and is commonly used as a
measure of selective constraint (Yang and Nielsen 2000).
For these data, we observe a weakly significant negative
correlation (Pearson’s r 5 $0.29, P 5 0.026) between
xg and E, despite previous work (Bustamante et al.
2000) and naı̈ve expectation that would both predict that
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genes with proportionally more exposed residues (higher E)
would have a higher xg. However, an important determi-
nant of E is the length of the protein (larger proteins have
proportionally smaller surface areas). Indeed E and length
are more strongly (negatively) correlated than E and xg

(Pearson’s r 5 $0.40, P 5 0.001). Because protein length
and selective constraint are known to be correlated (Bloom
et al. 2006), it is possible that the original correlation results
from the covariation of these variables. And in fact the cor-
relation between length and xg is nearly as large as that
between E and xg (Pearson’s r 5 0.26, P 5 0.04).

Modeling Structural Differences in Selective Constraint

These results point out the difficulties of between-gene
comparisons, namely, that selective constraint is known to
covary with a number of factors including expression
(Drummond et al. 2005, 2006) and gene essentiality (Jordan
et al. 2002; Pál et al. 2003). Instead, for this analysis, it is
more appropriate to consider differences in substitution
rates among sites within a single protein. To do so, we em-
ploy the models described above, where a codon’s substi-
tution rates are allowed to vary according to the surface
exposure of the residue at that codon.

In all cases, a version of the MG/GY 94 model which
allows a different selective constraint for interior (xi)
and surface (xs) residues fits these data significantly
better than does a single rate model where the average
constraint is given by xg (P , 0.0008, Bonferonni signif-
icance level a 5 0.0008; 2DlnLMG/GY-struct, table 1).
Selective constraints for interior positions were found
to be higher for all alignments (fig. 1). Perhaps surpris-
ingly, we see relatively little variation in the ratio of
xi/xs, with all but three observations falling between
0.035 and 0.145. One might suspect that the value of this
ratio would also depend on xg (the average constraint).
However, this does not appear to be the case: There is
much more variation in xg and no significant correlation
between xi/xs and xg (Pearson’s r 5 $0.16, P 5 0.21;
fig. 1).

Substitution Patterns and Differences among the Amino
Acid Residues

To further study the dynamics of substitution rates be-
tween surface and interior residues, we applied a model that
describes the probability of a substitution between two co-
dons as a function of the differences in the physical and

Table 1
Tests of Model Significance

LRT Null Model #AA Sub. Cats.a Alternative Model #AA Sub. Cats.a df # Sig. Resultsb

2DlnLMG/GY-struct MG/GY 94 1 MG/GY 94 2 1 61**

2DlnLprop LCAP 1 LCAP 1 1
Chem-comp ac-c 5 0 ac-c 6¼ 0 1*
Polarity apol 5 0 apol 6¼ 0 4*
Volume avol 5 0 avol 6¼ 0 59*
Isoelec aiso-e 5 0 aisoe 6¼ 0 25*
Hydropathy ahydro 5 0 ahydro 6¼ 0 44*

2DlnLstruct-prop LCAP 2 LCAP 2 1
Chem-comp aic-c 5 asc-c aic-c 6¼ asc-c 5*
Polarity aipol 5 aspol aipol 6¼ aspol 5*
Volume aivol 5 asvol aivol 6¼ asvol 9*; 15***
Isoelec aiisoe 5 asiso-e aiisoe 6¼ asiso-e 39*; 40***
Hydropathy aihydro 5 ashydro aihydro 6¼ ashydro 14*; 15***

2DlnLMG/GY-LCAP MG/GY 94 1 LCAPc 1 3 61**

2DlnLLCAP-struct LCAPc 1 LCAPd 2 4 61**

2DlnLMG/GY-LCAP-struct MG/GY 94 2 LCAPd 2 6 61**

2DlnLMG/GY-SG MG/GY 94 1 SG 1 1
Volumee 32**
Chargef 22**
Polarityg 44**

2DlnLSG-struct SG 1 SG 2 2
Volumee 60**
Chargef 61**
Polarityg 60**

2DlnLMG/GY-SG-struct MG/GY 94 2 SG 2 2
Volumee 30**
Chargef 53**
Polarityg 50**

a Number of amino acid substitution rate categories. A single substitution category was used for models that did not incorporate differences between surface and

interior residues. Such differences were modeled by including a second category of nonsynonymous rates (see text).
b **Significance level (a 5 0.0008), *significance level (a 5 0.05), and *** significance level (a 5 0.05) with aic-c 5 asc-c 5 aipol 5 aspol 5 0.
c For this model, we required that ac-c 5 apol50 (see text).
d For this model, we required that, aic-c 5 asc-c 5 aipol 5 aspol 5 0 (see text).
e Groups used: {E, F, H, I, K, L, M, Q, R, Y, W}; {A, C, D, G, N, P, S, T, V}.
f Groups used: {H, K, R}; {D, E}; {A, C, F, G, I, L, M, N, P, Q, S, T, V, W, Y}.
g Groups used: {C, D, E, H, K, N, Q, R, S, T, W, Y }; {A, F, G, I, L, M, P, V}.
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chemical properties of corresponding amino acids. Previ-
ously, we used five such properties: the volume of the res-
idue side chain, the isoelectric point, the residue’s polarity,
the chemical composition of the side chain, and the resi-
due’s hydropathy (Conant et al. 2007). To ascertain
whether all five properties were required to adequately
model the variation in the sequences used here, we applied
another LRT. For each property j, we compared the like-
lihood of observing the 61 sequence alignments when
that property was included in the model (aj 6¼ 0) with
the likelihood when it was excluded (aj 5 0). Of these
61 alignments, only one showed a nominally significant

constraint in chemical composition and only four in polarity
(P , 0.05; 2DlnLprop; table 1). These two properties also
only rarely showed significant differences after separation
based on solvent accessibility (P , 0.05; 2DlnLstruct-prop;
table 1). These numbers are not significantly different from
what would be expected under a 5% false-positive error rate
(P & 0.19), leading us to exclude these two properties from
further analysis. Note that when discussing individual prop-
erty results, we have used the nominal significance cutoff of
P ' 0.05 for illustrative purposes: Our conclusions do not
rest on this judgment of significance, and thus we do not
control the inherent multiple testing issues.

In all cases, the LCAP model fits these data better than
does the MG/GY 94 model (P, 0.0003; 2DlnLMG/GY-LCAP;
table 1). To allow for differences in surface and interior sub-
stitution patterns, we allow aij 6¼ asj and Ci 6¼ Cs. Doing so
significantly improves the fit of the data to the model (P ,
0.0001; 2DlnLLCAP-struct; table 1). For each sequence align-
ment and each of the three properties, we tested whether
we could reject the null hypothesis aij5asj (2DlnLstruct-prop;
table 1). We plot the ratio of the interior to surface weight
(aij=a

s
j ) against 2DlnLstruct-prop in figure 2. Strikingly, the con-

straint on isoelectric point differs in nominal significance be-
tween the interior and surface in 40 sequence alignments,
whereas volume and hydropathy are only significantly dif-
ferently constrained in 15 alignments each (P , 0.05;
2DlnLstruct-prop; table 1). This difference is likely a correlate
of the fact that volume and hydropathy are significantly con-
strained on average throughout these sequence alignments:
Fifty-nine and 44 cases show significant improvement in
fit when a single avol or ahydro is added (P, 0.05; 2DlnLprop;
table 1), whereas isoelectric point constraint is significant
in only 25 comparisons.
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FIG. 1.—No association of average x and the relative constraint of
interior residues. (A) Scatter plot of the genewide average value of x for
the 61 genes studied (xg, x axis) versus the ratio of the interior average x
to the surface average x (xi/xs, y axis). (B) Histogram showing the range
of xi/xs seen along the y axis of A.

FIG. 2.—Relative interior to surface constraint for three amino acid properties. Plotted on the x axis is the ratio of the weight given to that property
for interior residues to the weight given to surface residues (aij=a

s
j ). When this ratio is equal to one, the constraint is the same for interior and surface

residues. Values less than one indicate greater constraint in the interior and values greater than one less constraint in the interior. On the y axis is shown
twice the difference in ln-likelihood between a model where only one weight is given to the property in question and one where the interior and surface
residues have differing weights (2DlnLstruct-prop; table 1). Large values of this statistic are associated with significant differences in constraint between
the surface and interior. The horizontal dashed line in the two panels indicates a value of 2DlnLstruct-prop 5 3.85, corresponding to P 5 0.05. Points are
colored based on twice the difference in ln-likelihood for comparing a ‘‘single’’ rate model where aj 5 0 to one where aj 6¼ 0 (2DlnLprop; table 1). Large
values of this statistic (red) indicate significant evidence for an overall constraint on that property, ignoring structural features. The scale bar on the right
indicates three values of 2DlnLprop (5 10.83, P 5 0.001, 5 21.66, P 5 3.3 ( 10$16, and &32.48, P ' 1.2 ( 10$8). Note that values of 2DlnLstruct-prop
less than 10$4 in panel A are indicated with this value (four cases), whereas cases where asj50 5 0 (i.e., aij=a

s
j is undefined) are indicated with arbitrary

values of 150 (three cases). (A) Overview of the range of constraint across the 61 alignments for the three properties. Observe the log scale on the x axis
(meaning that values where aij=a

s
j50 are not shown). (B) Enlargement of the area in the dashed box in panel A with the log scale omitted for the x axis

and thus showing cases of aij=a
s
j50.
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Solvent Exposure and Amino Acid Residue
Classification

The LCAP model is not the only model allowing for
variation in amino acid substitution rates. Another approach
is to divide the amino acids into groups such that group
members are more similar to each other in some property
than they are to members of the other group(s). One can
then allow one substitution rate for two residues that are
members of the same group (Iw) and a second (generally
lower) rate (Ib) when the two residues are in different
groups (Sainudiin et al. 2005; Wong et al. 2006). We have
previously implemented this model and refer to it as the SG
model (Conant et al. 2007).

We thus asked if the above results were supported by
analyses using the SG model. We used three groupings of
the amino acid residues presented by Sainudiin et al.
(2005): those by volume, charge, and polarity (table 1).
These groups roughly reflect the volume, isoelectric point,
and hydropathy properties used in the LCAP model above.
We can model differences in surface and interior substitu-
tion rates by allowing a different Ib and Iw value for interior
and surface residues (Iib, I

s
b, and Iiw, I

s
w, respectively).

In general, the results from the SG model are similar to
those from the LCAP model. Thus, volume and polarity are
more likely than charge to show an overall constraint in a pro-
tein when solvent exposure is disregarded (2DlnLMG/GY-SG;
table 1). Likewise, charge more commonly improves the fit
of the model when surface and interior residues are distin-
guished (2DlnLMG/GY-SG-struct; table 1).

The LCAP and SG models are not nested with respect
to each other and should not be compared with an LRT. We
nonetheless note that the LCAP model in all cases consti-
tutes an improved fit over the corresponding MG/GY
94 model (2DlnLMG/GY-LCAP and 2DlnLMG/GY-LCAP-struct;
table 1). The SG model on the other hand is often not an
improvement over the corresponding MG/GY 94 model
(2DlnLMG/GY-SG and 2DlnLMG/GY-SG-struct; table 1). These
results illustrate a point we have made previously: Differing
models of codon substitution are appropriate for different
problems. The LCAP model is helpful in this analysis
because it can account for multiple amino acid properties
simultaneously. In other applications, the SG model may
be preferable, both because its parameters have straight-
forward interpretations and because the groups used can
be chosen to be appropriate for the question at hand.

Discussion

Our results show that there are systematic differences
in the evolution of interiors and surfaces of proteins. In-
deed, these two regions not only evolve differently, but
these differences also are similar across proteins and corre-
late with the physical properties of the amino acids.

Although proteins vary considerably in their overall
selective constraint, the relative constraints on the interior
versus the surface appear more uniform (fig. 1). This obser-
vation is somewhat surprising, and we do not have a simple
explanation for the phenomenon. We speculate that it re-
flects the fact that substitutions in the interior are more
likely to cause misfolding than a substitution on the surface

(Chothia and Finkelstein 1990). The difference between
surface and interior substitution patterns thus would result
directly from the physics of protein folding and hence might
well be at least approximately independent of the overall
selective constraint. One issue that will bear investigation
is the role of protein length, because larger proteins tend to
have a greater proportion of buried residues. Interestingly,
Bloom et al. (2006) have recently shown that proteins with
many buried residues tend to evolve more rapidly, a result
that may explain the association seen here between length
and selective constraint. These authors attribute this effect
to what is essentially a larger space of neutral mutations in
proteins with more buried residues. However, comparing
these authors’ results with our analyses of individual genes
is complicated by the issues already mentioned with asso-
ciating differences between proteins and patterns within
a protein.

We also find that the most obvious difference in sub-
stitution patterns between protein surfaces and interiors is in
whether changes in residue charge are allowed: Such
changes are more strongly selected against in protein inte-
riors (fig. 2). Because charged residues are generally not
found in protein interiors, another way to view this obser-
vation is as a selective constraint against the introduction
of charged residues into the protein interior. Interestingly,
neither residue volume nor residue hydropathy appears to
be differentially constrained to this same degree. Because
volume in particular is nonetheless significantly con-
strained across the proteins as a whole, we suggest that, be-
cause almost all residues are in contact with at least one
other residue, changes in residue volume can disrupt protein
folding at most positions in the protein.

Our conclusions will be most informative with regards
to the evolution of globular proteins, because such proteins
are more tractable for crystallization and hence overrepre-
sented in the data set used. It is less clear whether the same
evolutionary rules govern other protein classes, in particular
because we have previously seen that membrane-spanning
proteins evolve differently than do other proteins (Conant
et al. 2007). We also cannot be certain that these patterns
will hold in other taxa, although given the functional range
of genes surveyed, we would not be surprised if this were
the case.

Nonetheless, the observations above are of interest
both because they provide an improved understanding of
the evolutionary process and because they may also help
provide a statistical framework for the process of protein
engineering. It is already well known that amino acid res-
idue conservation can indicate mutations that are likely to
increase protein stability (Ohage et al. 1997; Lehmann et al.
2000, 2002). We suggest that models such as those above
may indicate which particular amino acid properties are
likely to be relevant when performing such analyses. They
may also help suggest pathways to move the engineering
process from the modification of existing functions to
the development of new ones (Ryu and Nam 2000).

Finally, this work illustrates a complementary mode of
analysis for understanding the factors influencing gene evo-
lution. Although evolution has provided innumerable nat-
ural experiments whereby two different genomes or sets of
genes can be compared to study what factors influence
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substitution rates (Jordan et al. 2002, 2003; Pál et al. 2003;
Hahn et al. 2004; Bloom et al. 2006; Drummond et al.
2006), it is also possible to employ a modeling approach
where a potentially important factor is included in the
model. Thus, our analysis heremakes solvent exposure a pa-
rameter in a model. A useful feature of this tactic is that it
becomes less likely that the signal of interest will be con-
founded by some third variable, such as gene expression
level. By using both within and between gene approaches,
we can more clearly discern patterns in molecular evolu-
tion. And one final benefit of developing models of se-
quence evolution is that they require us to define many
of our assumptions, allowing the option of testing these
assumptions in the future.

Supplementary Material

Supplementary figures 1 and 2 are available at Mo-
lecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/). Sequence alignments, tree files,
and proportional surface exposures are available from
http://web.missouri.edu/;conantg/data/yeast_struct_evol/
alignments_trees_rates.tar.gz.
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