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Abstract

Using two high-quality human metabolic networks, we employed comparative genomics techniques to infer metabolic
network structures for seven other mammals. We then studied copy number alterations (CNAs) in these networks. Using
a graph-theoretic approach, we show that the pattern of CNAs is distinctly different from the random distributions
expected under genetic drift. Instead, we find that changes in copy number are most common among transporter genes
and that the CNAs differ depending on the mammalian lineage in question. Thus, we find an excess of transporter genes in
cattle involved in the milk production, secretion, and regulation. These results suggest a potential role for dosage selection
in the evolution of mammalian metabolic networks.
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Introduction
Metabolism’s prominent role in facilitating most biological
processes and in shaping the availability of ecological
niches suggests that strong selective forces have fashioned
the metabolic wiring (Raymond and Segre 2006). Likewise,
metabolism’s central importance to life has made the study
of innovation among its systems a topic of particular inter-
est. Morowitz and colleagues (Morowitz et al. 2000; Smith
and Morowitz 2004) have argued that life originated
through the exploitation of the metabolites of the tricar-
boxylic acid cycle (although see Bada and Lazcano 2002).
Much metabolic innovation appears to have occurred early
in evolution: both the general structure and reaction mech-
anisms of extant enzymes predate the divergence of the
major domains of life (Caetano-Anollés et al. 2007). To un-
derstand such innovation, other researchers have consid-
ered how new catalytic proteins evolve: one model,
which is known by several names (the adaptive amplifica-
tion; adaptive radiation; or innovation, amplification, and
divergence model) posits that new enzymes are co-opted
from existing enzymes with low levels of the novel activity
(Roth and Andersson 2004; Francino 2005; Bergthorsson
et al. 2007). New enzymes are shaped by the action of nat-
ural selection on large duplicated arrays of these weakly
functional enzymes, which are subsequently reduced to
single copy once a high activity enzyme has evolved.

Gene duplication itself has long been seen as a major
route to evolutionary novelty (Ohno 1970): one topic of
recent interest is other mechanisms by which gene dupli-
cations promote innovation beyond the classic ‘‘neo-
functionalization’’ pathway (reviewed in Conant and Wolfe
2008). One such mechanism is dosage selection, where
the new trait is not the acquisition of a novel activity
but rather an increased capacity for an existing reaction

(Papp et al 2004; Kondrashov and Kondrashov 2006). A
noteworthy example is in the amylase gene, responsible
for starch digestion. In humans, high copy numbers of this
gene are associated with populations having high-starch
diets (Perry et al. 2007), suggesting a recent increase in
the selective benefit of high amylase activity. Such dosage
selection is only part of a larger pattern of requirements for
dosage balance that also influence patterns of gene dupli-
cation (Papp et al 2003; Freeling and Thomas 2006; Birchler
and Veitia 2007; Edger and Pires 2009). A familiar example
of this phenomenon is the necessity of X-chromosome in-
activation to compensate for dosage imbalances between
male and female mammals (Payer and Lee 2008). Any fixed
difference in copy number (i.e., duplication) between pop-
ulations began life as a within-population copy number
polymorphism. Such copy number variation contributes
significantly to differences in transcript abundance among
individuals (Stranger et al. 2007). More significantly, some
copy number variations have been shown to be driven to
high frequency by positive selection for increased expres-
sion of the corresponding gene (Gonzalez et al. 2005; Perry
et al. 2007; Nair et al. 2008), highlighting how gene dosage
modifications can be targeted by selection. However, the
evolutionary constraints that act on gene dosage have yet
to be fully elucidated. Discovery and functional assessment
of gene dosage alterations between species is therefore an
important element of understanding genome evolution.

Using the human metabolic network and orthologous
genes from seven other mammals, we explored how differ-
ences in enzyme gene copy number in mammals are asso-
ciated with the structure of the metabolic network. Our
work is based on recent advances in cataloging and mod-
eling metabolism. Such models can be used in a variety of
ways, but one of the more common is to frame them as
metabolic networks (Jeong et al. 2000). In this work, we
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use inferred genome-scale metabolic networks from humans
(Duarte et al. 2007; Ma et al. 2007) to study copy number
differences: we note that these networks are only two of sev-
eral available from a variety of organisms (Duarte et al. 2004;
Blank et al. 2005; de Oliveira Dal’Molin et al. 2010).

We asked whether the differences in enzyme copy num-
ber are distributed nonrandomly in the mammalian met-
abolic network. In yeast, it is known that enzymes that carry
high flux and that lie in highly connected parts of the met-
abolic network are more likely to undergo duplication
(Vitkup et al 2006), and we were curious whether similar
forces were at play in multicellular eukaryotes.

Materials and Methods
An overview of our methodology is illustrated in figure 1A.

Data Collection and Preprocessing
Complete genome annotations for eight mammals, Bos
taurus (cattle), Canis familiaris (dog), Equus caballus
(horse), Homo sapiens (human), Macaca mulatta (ma-

caque), Mus musculus (mouse), Pan troglodytes (chimpan-
zee), and Rattus norvegicus (rat) were obtained from
Ensembl release 50 (Flicek et al. 2010). For the purposes
of homology/orthology assignment, we obtained the lon-
gest transcript for each protein-coding gene along with its
genomic location.

We downloaded two H. sapiens metabolic networks,
MODEL6399676120 (Duarte et al. 2007) and
MODEL2021747594 (Ma et al. 2007), from the BioModels
database (Le Novere et al. 2006). Our goal was to use these
H. sapiens networks to assignmetabolic functions to genes in
the other seven genomes. In order to do so, wemust account
for the fact that the only link between the H. sapiens met-
abolic network and the networks to be inferred in the other
mammals is the orthology relationships between the ge-
nomes. As a result, we need to introduce a level of abstrac-
tion to the metabolic networks that we refer to as an
‘‘isoenzyme group.’’ These groups attempt to represent sets
of enzyme-coding genes all involved in the same reactions.
To create them, we agglomerate reactions from the meta-
bolic network in two steps. We first group enzyme-coding
genes involved in identical reactions. We then sequentially
merge any groups where the reactions of one group are
a subset of reactions of second group. The net effect is to
create isoenzyme groups such that each gene participates
in a subset (possibly complete) of the reactions associated
with that node (fig. 1B).

Orthology Assignment
Our orthology pipeline has been previously described
(Conant 2009). An outline is provided here.

Homology Detection
As a first step, homologous genes within and between ge-
nomes are identified by running GenomeHistory (Conant
and Wagner 2002) on the combination of two genomes,
namely the reference H. sapiens genome and a second tar-
get genome. GenomeHistory identifies pairs of homologous
genes using Blast (Altschul et al. 1997) and estimates their
nonsynonymous and synonymous divergences (Ka and Ks,
respectively) by maximum likelihood. We configured Ge-
nomeHistory to accept only gene pairs meeting the follow-
ing criteria: E-value cutoff of 10!9, protein length "75
amino acids, pairwise protein alignment length"70 amino
acids, and pairwise protein sequence identity "45%.

Synteny Mapping
We identify initial orthologs between the two genomes as
one-to-one matches in the GenomeHistory analysis (i.e.,
the two genes have no paralogs in their own genomes) that
have synonymous divergence such that Ks # 0.5 (P. trog-
lodytes and M. mulatta) or Ks # 0.75 (all others). Starting
with such initial orthologs, any pair of genes that are im-
mediate neighbors of such a pair and are also homologs are
now defined to be orthologs themselves. Using these new
orthologous pairs, the process is repeated until no further
orthologs are located.

FIG. 1. Metabolic network inference process. (A) Overview of the
inference process: Four steps produce several lists of genes/groups
and eventually generate the full networks. (B) Isoenzyme group
assignment: We group genes based on their participation in
a common set of reactions. Thus, every gene in the group
participates in at least a subset of the group’s reactions (and in no
other reactions). (C) Gene family assignment using shared
homology: Homology is defined on the basis of a GenomeHistory
search of the paired genomes (see Materials and Methods). (D)
Repartition of the families from (C) on the basis of the isoenzyme
groups from (B). The resulting subfamilies are used to populate the
target species metabolic network.
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At the completion of this analysis, the genes in each ge-
nome can be divided into four classes: orthologs, orphans,
ambiguous, and absent. The procedure for identifying or-
thologs has just been described. Orphans are genes in
one genome that have no hits in the other genome once
all the orthologs have been assigned. Ambiguous are genes
shared between two genomes, but where the synteny and
sequence information is insufficient to resolve orthology.
Absent genes, as their names imply, have no significant ho-
mologs in the other genome.

Verification of Absent Genes
Metabolic genes in H. sapiens with no identified homologs
in the target species were subjected to a second Blast anal-
ysis. We searched for these genes in the target genome with
an E-value cutoff of 10!5. This step allowed us to differen-
tiate weak hits from genes that were truly absent in the
target genome.

Metabolic Network Construction
Given the homology data from GenomeHistory, we defined
a set of ‘‘gene families’’ that include genes across species.
These gene families are defined on the basis of single-linkage
clustering using the homology relationships determined by
GenomeHistory (fig. 1C). We then defined subfamilies within
these families such that all H. sapiens members of that sub-
family with annotations in the metabolic network belong to
the same isoenzyme group (fig. 1D).

Orphan Genes Mapping
We first attempted to assign the orphan genes (in each
species) that fall perfectly into a subfamily. In H. sapiens,
these orphans are already assigned if they are part of
the metabolic network. In the other cases in H. sapiens
and in all cases in the target species, orphans will not have
direct network annotations. However, if such an orphan gene
is amember of a gene family where that family is amember of
exactly one isoenzyme group, we assign that orphan to that
isoenzyme group. In cases where the gene family consists of
two subfamilies in different isoenzyme groups, we make no
assignment of that orphan to an isoenzyme group because its
functional annotation is uncertain.

Ambiguous Genes Mapping
An ambiguous gene between the target genome and
H. sapiens is one for which orthology cannot be established
because the gene is a member of a large gene family in both
genomes. In our metabolic analysis, lack of resolved orthol-
ogy is an issue only if the members of that gene family in
H. sapiens are split between several isoenzyme groups (i.e.,
several subfamilies). If all annotated orthologs have the
same subfamily, we can reasonably assign all ambiguous
genes of that same subfamily to the same isoenzyme group.
After this reconciliation, we may also be able to assign func-
tions to further remaining orphans in the same way.

Network Construction
At this point, the assignment of genes to subfamilies is
complete. We next collected all such gene families that
matched to only a single isoenzyme group. If a newly

formed gene family belonged to more than one isoenzyme
group, we checked whether this difference could be
accounted for as one H. sapiens isoenzyme group being
a subset of the other. The set of isoenzyme groups for
a given gene family is then searched to see if one isoenzyme
group can be assigned such that any remaining isoenzyme
groups for that gene family are subsets.

Finally, each mapped isoenzyme group is defined as
a node in our isoenzyme network. Edges between these
nodes are defined by shared metabolites between the in-
cluded reactions of the two isoenzyme groups (as reported
in the H. sapiens metabolic network). The network is
directed: for irreversible reactions if the product of one
reaction is a reactant in the second, we define a directed
edge. Reversible reactions are treated similarly, except that
both directions of the reaction are allowed and handled
independently. Thirteen currency metabolites (Hþ, H2O,

FIG. 2. Detecting duplication-enriched clusters. The 215 CNA nodes
from Bos taurus. The clusters of isoenzyme group with CNAs of two
nodes or more are in lavender. (A) Overview of the cluster
detection method. The number and size of the connected
components (shaded clusters in the figure) for the real network are
calculated after non-CNA nodes (white) are removed. These clusters
are then compared with those seen in randomized networks with
the same number of CNA nodes (see Materials and Methods).
(B) Clusters observed in B. taurus. The detail illustrates a subsection
from the Golgi apparatus. The orange nodes are N-acetylglucosa-
minyl transferases: metabolic pathways associated with each node
are indicated.
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ATP, ADP, Pi, PPi, Na
þ, coenzyme A, O2, NAD

þ, NADH,
NADPþ, and NADPH) were removed from all analyses in
whichever compartments they occurred (Huss and Holme
2007). We then used the H. sapiens reference network of
Duarte et al. (2007) to locate each metabolite in a cellular
compartment. We then assigned each isoenzyme group to
the compartment where the product of that reaction is
located. A few reactions, coded by the same set of genes,
are located in multiple compartments; hence they were as-
signed to a virtual compartment termed ‘‘Multiple.’’ Our
approach necessarily assigns the transporters to the desti-
nation compartment. In the second set of analyses, a spe-
cific compartment was created for the transporters (which
we defined as reactions having metabolites in two com-
partments).

Using these fully constructed networks, we analyzed
gene copy number alterations (CNAs) between each spe-
cies and H. sapiens for each isoenzyme group node. For
our purposes, we defined a CNA as any node possessing

a different number of included genes in the target species
as compared with that number inH. sapiens. The inferredmet-
abolic networks were deposited at the EBI BioModels database
using the references: MODEL1008120000–MODEL1008120006.

Visualization
The networks were visualized with Gephi v0.7 (Bastian et al.
2009) using the Force-based algorithm ForceAtlas. ForceAt-
las works similarly to the Früchterman–Rheingold algorithm
(Fruchterman and Reingold 1991), with the difference that
the repulsion between two nodes is proportional to degree
(n1)% degree (n2). Thus, the former will tend to bring nodes
of degree 1 closer to their neighbors than will the latter.

Pathway Enrichment Analysis
Each gene from the reference H. sapiens networks is asso-
ciated with one or more Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (Kanehisa et al. 2010). We im-
ported the KEGG pathways (209 pathways, 5,281 genes).

FIG. 3. Inferred metabolic network for Bos taurus. (A) The complete metabolic network, the cellular compartment, and the location of the
nodes with CNAs are shown. Node and edge colors indicate the cellular compartment. Darkly shaded nodes are the isoenzyme groups with
CNAs; pale nodes are those nodes without variation. (B) The distribution of the number of nodes with CNAs (the equivalent of the ‘‘node
count’’ shown in fig. 5) for each compartment: the pale fraction again represents nodes without CNAs.
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We then collected for each pathway the number of isoen-
zyme groups with CNAs (from the total of 944 isoenzymes,
1,437 genes, and 171 pathways). We plotted the number of
isoenzyme groups with CNAs in a pathway as a function of
the total number of isoenzyme groups involved in that path-
way. Simultaneously, we inferred the best linear fit of these
two variables; doing so allowed us to calculate the normal-
ized residual for each value. Any value with a residual signif-
icantly different from the expectation was defined as an
outlier, that is, it has fewer or more CNAs than would be
expected. These outliers represent a pool of reactions with
the potential to be under copy number selection.

Milk Production Particulars
For each isoenzyme group including extracellular trans-
porters and exhibiting CNAs, we collected the associated
KEGG pathways (supplementary table S3, Supplementary
Material online) in B. taurus.

Network Metric Calculations
We used Gephi to calculate network statistics, including in-
and out-degrees, betweenness centrality, closeness central-
ity, network diameter, average clustering coefficient, the av-
erage shortest path, eccentricity, and network modularity
(Newman 2006; Opsahl. et al. 2010). Statistical evaluations
were performed with R (http://www.r-project.org/) using
nonparametric tests (Kolmogorov–Smirnov test).

Clustering Tests
We were interested in to what extent CNAs tended to clus-
ter in the metabolic network. To assess this, we first re-
moved from the network all nodes without CNAs. We
then calculated the number of connected components
among the remaining nodes having CNAs (blue regions;
fig. 2A). To assess whether these components were bigger
than would be expected, we used network randomization.
We began by copying the original network and reassigning
the duplication status at random. The result was random-
ized networks with the same number of nodes with CNAs
but for which the location of those nodes was random (fig.
2A). We again removed the unaltered nodes and computed
connected components for the random networks. We per-
formed 10,000 permutations and used the distribution of
component sizes to determine whether the clusters in the
real network were larger than expected. The procedure was
implemented in Cþþ using the Boost Libraries (http://
www.boost.org/). The code is available upon request.

Results

Reference Networks
The H. sapiens metabolic network of Ma et al. (2007) (Bio-
model MODEL2021747594; 2007) consists of 2,716 metabo-
lites, 2,566 reactions (1,052 with unique Enzyme Commission
number), and 2,322 genes. There are 889 reactions associated

Table 1. Summary of the Seven Inferred Metabolic Networks.

Pan troglodytes Macaca mulatta Mus musculus Rattus norvegicus Bos taurus Equus caballus Canis familiaris

Genomesa

Total protein-coding genes 19,829 21,905 23,493 22,503 21,036 20,322 19,305
Orthology stagea

Orthologous pairsb 19,620 17,168 16,683 15,350 15,892 16,515 15,904
Orphan genes 59 1,457 1,963 2,280 1,656 1,824 1,002
Ambiguous genes 648 2,479 2,934 4,056 3,450 2,175 2,117
Orthology stage
Gene families 1,509 1,500 1,382 1,340 1,357 1,347 1,362
Genes (Duarte et al. 2007)
Assigned orthologs 1,412 1,363 1,389 1,256 1,295 1,342 1,296
Orphan genes 9 234 331 332 163 80 165
Ambiguous genes 36 79 334 317 379 105 163
Nodes (Duarte et al. 2007)
Variable nodes 36 154 143 208 215 135 155
Invariable nodes 886 755 772 677 675 770 742
Unassigned groups in target 22 35 29 59 54 39 47
Total isoenzyme groups 944 944 944 944 944 944 944
Genes (Ma et al. 2007)
Assigned orthologs 2,180 2,104 2,101 1,919 1,991 2,057 2,015
Orphan genes 7 283 136 353 187 93 183
Ambiguous genes 45 137 149 278 271 102 173
Nodes (Ma et al. 2007)
Variable nodes 43 171 123 180 193 135 148
Invariable nodes 791 656 705 617 621 682 667
Unassigned groups in target 13 20 19 50 33 30 32
Total isoenzyme groups 847 847 847 847 847 847 847
Visualizationc Supplementary

figure S1A
Supplementary
figure S1B

Supplementary
figure S1C

Supplementary
figure S1D Figure 3

Supplementary
figure S1E

Supplementary
figure S1F

NOTE.—Supplementary Material online.
a All protein-coding genes (including gene from the metabolic network).
b Includes inter- and intraspecies pairs.
c The Visualization field refers to the Duarte et al., inferred networks only.
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with at least one gene, and 2,339 metabolites are used by
these reactions. Using this network, we established 847 iso-
enzyme groups. The overall network includes 2 isolated no-
des not connected to others nodes: these nodes occur
because some reactions do not have associated genes and
hence cannot be part of isoenzyme groups. The H. sapiens
isoenzyme network has 189,247 edges and the following net-
work statistics: diameter: 4, average shortest path: 1.81, den-
sity: 0.267 (Sabidussi 1966; Coleman and More 1983).

The metabolic network of Duarte et al. (2007) (Biomodel
MODEL6399676120; 2007) includes cellular compartments
for all metabolites and includes 3,188 metabolites, 3,742
reactions, and 1,496 genes. Of the reactions, 2,307 reactions
are associated with at least one gene, and 2,331 metabolites
are used by these reactions. We established 944 isoenzyme
groups. The overall network included 4 isolated nodes and
81,759 edges. Network statistics: diameter: 6, average short-
est path: 2.31, density: 0.092.

Inferred Networks
Our goal was to study differences in enzyme copy number
among eight mammalian genomes. We made an initial or-
thology assignment (see Materials and Methods) that pro-
duced a list of assigned orthologs and absent genes, as well
as orphan and ambiguous genes. For each of the seven
other mammals (fig. 3 and supplementary fig. S1, Supple-
mentary Material online), we then mapped the H. sapiens
network onto that target genome in four steps, with the
aim of assigning target genes to isoenzyme groups so as
to evaluate the CNAs. Supplementary figure S2 (Supple-
mentary Material online) shows the assignment results
in B. taurus at each step of the process. The first step assigns
only orthologs, resulting in many unassigned nodes,
whereas the full process significantly reduces this number.
The remaining cases of unassigned isoenzyme groups may
either represent true missing functions in the target ge-
nome or nonsequenced/annotated genes in that genome.
Table 1 summarizes the results of the full process for the
seven target species. Because some species have more met-
abolic genes than H. sapiens, the number of genes we can
identify in the target genome was between 92% and 130%
of the number of reference human genes. The number of
assigned isoenzyme groups (groups we can identify in the
target genome relative to the complete H. sapiens meta-
bolic network) was between 94% and 98% of the total
set of isoenzyme groups for both metabolic networks.

Pathways Enrichment Analysis
We investigated whether particular metabolic pathways
seemed to be over or underrepresented among the gene
CNAs. We extracted for each pathway the number of iso-
enzyme groups with CNAs (944 isoenzymes, 1,437 genes,
171 pathways) and estimated the overall relationship be-
tween the number of genes in each pathway and the num-
ber of CNAs using linear regression (fig. 4A). Adjusted R2

were 0.659, 0.634, 0.389, 0.591, 0.448, 0.081, and 0.656 for B.
taurus, C. familiaris, E. caballus, M. mulatta, M. musculus,

P. troglodytes, and R. norvegicus, respectively. The extremely
low R2 value for the human–chimpanzee comparison is
due to the very small number of CNAs found between
these very recently diverged taxa. The normalized residuals
(fig. 4B) were calculated and outliers (.1.96 r or ,!1.96
r) collected (table 2). Out of the 171 pathways present, 20
are significantly overrepresented with CNAs, and 9 are un-
derrepresented. Examples of pathways found to have an ex-
cess of CNAs include the steroid hormone and retinol
pathways as well as pathways involved in cytochrome
P450 metabolism and associated with Huntington’s disease.

FIG. 4. Pathways enrichment analysis for Bos taurus. (A) Number of
isoenzyme groups with CNAs in a pathway (y axis) versus the total
number of isoenzyme groups involved in that pathway (x axis). The
black line illustrates the linear regression line (adjusted R2: 0.659);
the darker shaded area represents one standard deviation from the
expected trend, the lighter area, two standard deviations. (B)
Normalized residuals from the linear regression. Gray lines are the
significance thresholds (±1.96 ; a 5 0.05). ‘‘d,’’ Values not
significantly different from the regression model prediction; ‘‘s,’’
Significantly divergent values (outliers).
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To explore the discrepancy in observed CNA frequen-
cies, we evaluated the distribution of the isoenzyme groups
showing the CNAs across the seven species, examining how
often a given isoenzyme group exhibited a CNA. Supple-
mentary figure S3 (Supplementary Material online) shows
the proportion of isoenzyme groups with CNAs in a given
number of species (using the network of Duarte et al.
2007) as compared with the expected distribution
whether the seven networks were independent and
CNAs were randomly occurring. The two distributions
are statistically distinguishable, but we cannot rule out
the influence of the phylogenic relationships among the
species.

Metrics
We next assessed if there was an association between sev-
eral network statistics (node degree, betweenness, and
closeness centrality; Sabidussi 1966; Brandes 2001) and
the propensity of a node to possess a CNA. These measures
all evaluate, to one degree or another, the ‘‘importance’’ of
a particular enzyme (node) in the metabolic network. In
other words, nodes of high betweenness or degree repre-
sent parts of the network that affect many other nodes,

meaning that damage to them is likely to have large effects
on metabolism. Because the network of Ma et al. (2007)
lacked compartment information, we excluded the latter
from this analysis. As described in the Materials and Meth-
ods, we introduced a virtual cellular ‘‘Transport’’ compart-
ment: we performed our network statistics analysis both
with and without this compartment. For many cellular
compartments, we found significant associations between
network statistics and CNAs when transport reactions
were included in those compartments, but the association
was no longer significant when the transport reactions
were removed (supplementary tables S1 and S2, Supple-
mentary Material online). The distribution of copy number
changes is nonrandom, as judged both by the structure of
the network itself and by the distribution of network sta-
tistics for nodes with changes in copy number (fig. 5). Spe-
cifically, the order Rodentia (fig. 5, node 1) shows copy
number changes among Golgi apparatus transporters,
whereas in the superorder Laurasiatheria (fig. 5, node 2),
we find an excess of duplication/loss among the extracel-
lular transporters. It is especially intriguing that although
these patterns are lineage specific, there is an overall trend
toward apparent duplication among the transporters.

Table 2. List of the Pathways Over- or Undertargeted by CNAs.

KEGG Pathwaya
Pan

troglodytes
Macaca
mulatta

Mus
musculus

Rattus
norvegicus

Bos
taurus

Equus
caballus

Canis
familiaris

Glycolysis/gluconeogenesis d d d d

Steroid biosynthesis s

Steroid hormone biosynthesis d d d d

Oxidative phosphorylation d d d

Purine metabolism d

Pyrimidine metabolism s s

Alanine, aspartate, and glutamate
metabolism s

Glycine, serine, and threonine metabolism s

Cysteine and methionine metabolism d

Taurine and hypotaurine metabolism d d

Starch and sucrose metabolism d

Amino sugar and nucleotide sugar
metabolism s

Glycosylphosphatidylinositol-anchor
biosynthesis s

Glycerophospholipid metabolism s s s s

Arachidonic acid metabolism d d

Linoleic acid metabolism d d

Glycosphingolipid biosynthesis d

Butanoate metabolism d

Retinol metabolism d d d d

Metabolism of xenobiotics by
cytochrome P450 d d d d

Drug metabolism—cytochrome P450 d d d d d

Drug metabolism—other enzymes d d

ABC transporters d

PPARb signaling pathway s

Peroxisome s s s s

Vascular smooth muscle contraction d

Alzheimer’s disease d d d

Parkinson’s disease d d

Huntington’s disease d d d d

NOTE.—‘‘s,’’ Pathway less variable in copy number than expected (9); ‘‘d’’ Pathway more variable than expected (20). PPAR, Peroxisome proliferator-activated receptor.
a For the 17 pathways under selection compared with the average for each species, the distribution of CNAs across the seven species is detailed.
b Peroxisome proliferator-activated receptor.
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Clustering
The nonrandom distribution of CNAs among pathways
and cellular compartments led us to ask whether the CNAs
might be clustered in the overall network. We thus

searched the network for clusters enriched in CNAs. To
do so, we first removed from the network all nodes without
CNAs and then calculated the number of connected com-
ponents among the subset of nodes with CNAs. Note that
this removal implicitly removes any edges that end at no-
des lacking CNAs, drastically reducing the number of edges
in the network. The result is to reduce the network from
one large component (of the form illustrated in fig. 3) to
numerous isolated ones (blue regions in fig. 2A). We as-
sessed the statistical significance of these induced clusters
by network randomization (fig. 2A; see Materials andMeth-
ods). For all seven genomes surveyed, and using either
network (Ma et al. 2007 or Duarte et al. 2007, when disre-
garding the compartmental information), we found that
there were significantly fewer and larger connected com-
ponents (e.g., clusters) in the real network than would
be expected based on the distribution of component sizes
and number seen in the randomized networks (P, 0.001).
When we examine the compartmentalized networks, we
find fewer cases of significant clustering (table 3), likely be-
cause our test for significant clustering relies on intercon-
nected metabolic pathways, pathways that can be hidden
in the compartmentalized analysis when shared metabo-
lites are present in separate cellular compartments. The real
networks also showed higher than expected in- and out-
degrees within these clusters (table 3). For example, the
largest cluster found in the B. taurus metabolic network
includes 104 isoenzyme groups linking numerous meta-
bolic pathways. The orange nodes in figure 2B illustrate
a subsection of this cluster from the Golgi apparatus: All
the orange nodes are N-acetylglucosaminyl transferases be-
longing to keratan sulfate biosynthesis, sphingolipid metab-
olism, or blood group biosynthesis pathways. These nodes
are linked to each other and are connected to other path-
ways and represent a group of genes that are present in
higher copy numbers in B. taurus than in H. sapiens (except
for nodes also belonging to sphingolipid metabolism).

Discussion
Using an approach that allows us to map more than 94% of
the H. sapiens metabolic network onto other mammalian
species, we have explored the patterns of CNAs across
these mammalian networks. Despite the fact that mamma-
lian genomes have significant differences in gene content
and organization (Murphy et al. 2001), the metabolic net-
work topology is relatively conserved across this group (us-
ing H. sapiens as reference). Nonetheless, there are
reasonably large numbers of CNAs observed (table 1):
many of these variations appear to involve transporter pro-
teins (fig. 5).

Of course, one important caveat of our analysis is that
we have only the expertly curated metabolic networks
from H. sapiens to use as the basis of our analyses. Thus,
we cannot compare the networks from the other seven
species directly but must instead contrast their evolution-
ary path with that in humans. Having a second out-group
metabolic network would clarify the evolutionary history of
the CNAs. However, we note that although two metabolic

FIG 5. Association of CNAs and network statistics. Several metrics
have been used to describe the networks and the distribution of
CNAs between species. Using the species tree (Murphy et al. 2007;
Prasad et al 2008) at left, we show how the number of CNAs
increases with greater evolutionary distance from the reference
human network (‘‘node count,’’ far right). For each lineage, we show
the cellular compartments for which the metric in question
significantly differs between nodes with CNAs and those without
(supplementary tables S1 and S2, Supplementary Material online).
In-/out-degrees describe the number of reactants or products for
each isoenzyme group, respectively. Closeness centrality evaluates
the proximity of a node to every other isoenzyme node. The node
count is the number of isoenzyme groups with CNAs. The squares
indicate the compartment name. The ‘‘*’’ denotes the transporters
from that compartment rather than the compartment itself. The
arrows indicate whether the nodes with CNAs have an increased or
decreased mean value compared with the invariant nodes. Labeled
branch points in the phylogeny: 1, Rodencia; 2, Laurasiatheria. For
example, the Rattus norvegicus network shows a P value significant
for the mitochondria ‘‘Closeness centrality’’ metric (supplementary
table S1, Supplementary Material online): 0.0270. It is reported as
a yellow square. By adding a ‘‘transporter’’ compartment (supple-
mentary table S2, Supplementary Material online) and subtracting
the mitochondrial transporters from the mitochondrial compart-
ment, this value became nonsignificant: 0.6245. This illustrates that
the mitochondria transporters are carrying the signal; an ‘‘*’’
indicates cases where this is true.
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networks for M. musculus have been published (Sheikh
et al. 2005; Selvarasu et al. 2010), they are less than ideal
for our purposes as they only cover a small proportion
of the set of enzyme-coding genes (473 and 724, respec-
tively, supplementary fig. S4, Supplementary Material on-
line), as compared with more than 1,400 genes for both
human networks and more than 1,800 genes placed in
the M. musculus network by our techniques above.

Our results clearly show that the CNAs in metabolism
are not all selectively neutral: they cluster in the metabolic
network, creating a large interconnected subnetwork
within the core metabolic network. Random distributions
of CNAs do not mimic this pattern, indicating that some
form of natural selection has acted to preserve duplications
(or to favor gene losses) in the network. This result might
seem to conflict with the known importance of genetic
drift in preserving eukaryotic duplicate genes (Lynch and
Conery 2003). However, we suggest that this difficulty is
probably mostly one of perspective, especially as the com-
parisons being made here tend to be over larger evolution-
ary distances where selection may play a more prominent
role. As mentioned, many of the CNAs involve transporter
genes that show significantly different patterns of evolution
in copy number than does the remainder of the metabolic
network. These transporter alterations are not uniform
across the mammalian phylogeny but vary by cellular
compartment according to the lineage in question (fig. 5).
Together with the presence of very large clusters intercon-
nected by these transporters (table 3 and fig. 2B), the re-
sults may indicate that transporter duplication is favored in
more central regions of the network, leading to the higher
in- and out-degrees of the CNA-associated transporters in
figure 5.

Similarly, we find that core sugar metabolism (glycolysis/
gluconeogenesis, and glycerophospholipid metabolism)
show an excess of CNAs, recalling known patterns of du-
plication both in vertebrates (Steinke et al. 2006) and in
other organisms (Conant and Wolfe 2007). Curiously, al-
though the peroxisome (as defined in KEGG) mainly

consists of membrane proteins and transporters, this or-
ganelle actually possesses fewer CNAs than does the net-
work at large. We attribute this difference to the relative
isolation of this region of the metabolic network: closeness
centrality among these reaction nodes is also low (fig. 5).

These general observations support a role for gene dos-
age as one factor in preserving duplications in the mam-
malian metabolic network. The association of CNAs and
transporters is especially intriguing given that Saccharomy-
ces cerevisiae (bakers’ yeast) cells under selection from a glu-
cose-limited environment undergo multiple tandem
duplications of their high-affinity glucose transporters
(Brown et al. 1998). A particularly interesting illustration
of the related phenomenon in mammals is in the metab-
olism of cattle milk production. As shown by the figure 3,
a significant excess of extracellular transporters from B. tau-
rus involved in milk production possess CNAs. The path-
ways involved include milk production itself (Jensen 1995),
as well as its regulation (Ingvartsen and Friggens 2005;
Hammon et al. 2007) and the induction of mammary an-
giogenesis (Spitsberg 2005; Nakajima et al. 2009). Notably,
one of the transporters showing CNAs between H. sapiens
and B. taurus (DGAT1) is also the site of a quantitative trait
locus for milk production (Grisart et al. 2002). These results
are also consistent with Lemay et al. (2009). We hypothe-
size that natural or artificial selection for milk production
has shaped these CNAs; indeed, it may be the case that
alteration of transporter gene dosage represents one of
the more evolutionarily ‘‘easy’’ adaptations. That these
CNAs are cattle-specific amplifications is clear from the fact
that no similar alterations are seen when comparing other
mammalian networks to the human network.

CNAs between species likely represent a complex mix-
ture of dosage-related adaptations, cases of enzymatic
‘‘neo-functionalization’’ through gene duplication, artifacts
of genetic drift, and likely other processes we have yet
to identify. Given the ability to not only identify copy num-
ber changes between sequenced genomes but also to put
them into the functional context of a biological network, it

Table 3. Details of the Clustering Analysis.

Pan
troglodytes

Macaca
mulatta

Mus
musculus

Rattus
norvegicus

Bos
taurus

Equus
caballus

Canis
familiaris

Ma et al. (2007)
Bigger maximal component d d d d d

Fewer components d d d d d d

Higher average in-degree d

Higher average out-degree in the real data d

Duarte et al. (no compartment)a

Bigger maximal component d d d d

Fewer components d d d

Higher average in-degree d d d d d d d

Higher average out-degree in the real data d d d d d d d

Duarte et al. (2007)
Bigger maximal component d d

Fewer components d d

Higher average in-degree d d d

Higher average out-degree in the real data d d d

a The network of Duarte et al. (2007) was decompartmentalized for comparison with the network of Ma et al. (2007).
‘‘d,’’ Results significant (P , 0.001).
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should soon be possible to tease apart the relative contri-
butions of these various mechanisms and even potentially
exploit copy number alteration in fields such as agriculture
and medicine.

Supplementary Material
Supplementary tables S1–S3 and figures S1–S4 are available
at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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