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Abstract

Using a phylogenetic model of evolution after genome duplication (i.e., polyploidy) and 12 yeast genomes with a shared
genome duplication, I show that the loss of duplicate genes after that duplication occurred in three phases. First, losses
that occurred immediately after the event were biased toward genes functioning in DNA repair and organellar functions.
Then, the main group of duplicate losses appear to have been shaped by a requirement to maintain balance in protein
levels: There is a strong statistical association between the number of protein interactions a gene’s product is involved in
and its propensity to have remained in duplicate. Moreover, when duplicated genes with interactions were lost, it was
more common than expected for both members of an interaction pair to have been lost on the same branch of the
phylogeny. Finally, in the third phase of the resolution process, overretention of duplicated enzymes carrying high flux
and of duplicated genes involved in transcriptional regulation became dominant. I speculate that initial retention of such
genes by a requirement to maintain gene dosage set the stage for the later functional changes that then maintained these
duplicates for long periods.

Key words: protein interaction network, metabolic flux, gene dosage, transcriptional regulatory network, polyploidy,
Saccharomyces cerevisiae.

Introduction
The evolutionary potential of whole-genome duplication
(WGD or polyploidy) has been widely appreciated since
Ohno (1970). This potential ranges over many problems in
biology, altering our understanding speciation genomics and
adaptability and even of basic cell biology (Soltis and Soltis
2012). But most WGD-created duplicate genes do not persist
indefinitely, making the essential question regarding poly-
ploidy why some duplicates survive and most others do
not. One of the key pieces of data for addressing this question
is the fact that those surviving duplicates often have specific
functions, including ones such as ribosomal proteins or tran-
scription factors. However, smaller-scale duplications (includ-
ing tandem duplications) rarely produce surviving duplicate
genes from this set of functional categories (Seoighe and
Wolfe 1999; Maere et al. 2005; Aury et al. 2006; Wang et al.
2011; Brenchley et al. 2012; D’Hont et al. 2012). To explain this
pattern, it has been proposed that, after WGD, selection pre-
serves duplicates that operate together in, for instance, mac-
romolecular complexes so as to maintain the members’
relative stoichiometries (Papp et al. 2003; Freeling and
Thomas 2006; Freeling 2009; Veitia and Birchler 2010;
Birchler and Veitia 2012). Testing this theory, however, is
not trivial because selection to maintain balance is only one
mechanism of duplicate preservation. Other possible mech-
anisms include neofunctionalization and subfunctionaliza-
tion, as well as selection on features such as absolute copy

number. Hence, it is very difficult to identify the particular
preservation mechanism of individual duplicate gene pairs
(Hahn 2009).

These problems are exacerbated by the fact that the work
to date has focused on the extant genomes of polyploid spe-
cies. As a result, both the different ages of the WGD events in
these genomes and the different selective environments of
these species confound the understanding of duplicate loss.
Here, I argue that what is needed is a time-resolved descrip-
tion of the evolution of a polyploidy genome. Fortunately,
genomes from multiple yeast species that share an ancient
WGD (Goffeau et al. 1996; Wolfe and Shields 1997; Dietrich
et al. 2004; Dujon et al. 2004; Kellis et al. 2004; Scannell et al.
2007; Gordon et al. 2011) allow us make exactly these
inferences.

The yeast WGD has already enhanced our understanding
of the interplay of WGD and functional evolution: There is
increasing evidence that Saccharomyces cerevisiae’s metabolic
preference for aerobic fermentation can be traced to the
WGD (Blank et al. 2005; Pi!skur et al. 2006; Conant and
Wolfe 2007; Merico et al. 2007; van Hoek and Hogeweg
2009). More generally, Scannell et al. (2007) used comparative
genomics to show that post-WGD duplicate loss was rapid
and coincident with speciation, leading to lineages with nearly
independent histories of WGD resolution. These nonshared
losses may have contributed to reproductive isolation among
the respective yeasts (Scannell et al. 2006).
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In this work, I take a new approach to the study of the
factors driving duplicate preservation and loss after WGD.
Rather than focusing on the surviving duplicates (often a
small proportion of the genome), I use a phylogenetic
model of duplicate resolution (Conant and Wolfe 2008), com-
bined with multiple post-WGD yeast genomes (Gordon et al.
2011), to study the time course of the WGD resolution, seek-
ing to understand not merely which duplicates survive, but
the rules governing the order in which the previously dupli-
cated genes were returned to single copy. Using this ap-
proach, I find that there were at least three distinct phases
of WGD resolution. The very earliest losses involved a small
group of genes that may find being duplicated problematic,
including genes for DNA repair enzymes and for proteins
targeted to the mitochondria. This phase was followed by a
large number of losses that followed the predictions of the
dosage balance hypothesis. Finally, there is a group of long-
lived duplicates that are retained by what appear to be idio-
syncratic selection pressures.

Results
Our probabilistic model of the loss of duplicate genes after
WGD (POInT: Polyploidy Orthology Inference Tool; Conant
and Wolfe 2008) takes as input an alignment of approxi-
mately 4,100 ordered loci (Gordon et al. 2009) in 12 genomes,
each duplicated at WGD (fig. 1). Each locus in these data,
which were kindly provided by the Yeast Gene Order Browser
project (Byrne and Wolfe 2005), can be in one of six states
(fig. 2D). Transition rates between the states are calculated by
solving the system of differential equations implied by the
instantaneous substitution rates (Materials and Methods).
The calculation also, at every locus, sums over all 212!1 orthol-
ogy states for these 12 genomes (fig. 1). Because of this ex-
ponential scaling in problem size, I used the new Intel Phi
coprocessor to make the computation feasible (Jeffers and
Reinders 2013). Using POInT, I have estimated, for each an-
cestral locus duplicated at WGD, the probability that one of
the two duplicate genes produced by the WGD was lost on
each of the branches of the phylogenetic tree in figure 2B. The
total number of inferred losses for each branch is given above
it in that figure.

POInT returns the predicted history of losses, which is
effectively a set of probabilistic reconstructions of the ances-
tral genomes at each node of figure 2B (e.g., fig. 2C). Those
reconstructions allow specific tests of the dosage balance hy-
pothesis. That hypothesis makes two predictions regarding
how duplicates were lost after WGD. First, the losses should
have been biased toward genes whose products were in-
volved in fewer interactions with other genes’ products.
Second, to the extent genes with interactions were lost, the
contemporaneous loss of that gene’s duplicated interaction
partners should have been more frequent. The thinking
behind this prediction is that both the fully duplicated and
single-copy states are assumed to be balanced and hence
evolutionarily stable. There are then at least three ways in
which transitions between the two stable states (duplicated
and single copy) could occur. If the fitness cost of an imbal-
ance is nontrivial but not large, the losses could occur with

dynamics similar to that of the alternating mildly deleterious
and mildly advantageous substitutions proposed by
Charlesworth and Eyre-Walker (2007), with an initial mildly
deleterious loss event being followed by the adaptive fixation
of the second loss. A second mechanism might be observed
were the cost of imbalance higher: The second null mutation
could then need to occur while the deleterious first loss was
still segregating in the population. Finally, one might have
compensating increases in expression in the retained paralogs
that release the dosage constraint and allow neutral losses
(Scannell and Wolfe 2008). Under all three scenarios, we
might expect to see more shared losses of duplicated inter-
action partners along a single branch of figure 2B than
expected.

To test these predictions of the dosage balance hypothesis,
I used four types of global interaction network data: Protein–
protein interactions, metabolic flux, transcriptional regulatory
interactions, and interactions between kinases and their tar-
gets (Materials and Methods). Starting with the protein in-
teraction (PPI) network, for each branch of figure 2B leading
to S. cerevisiae, I calculated the mean number of protein in-
teractions for both those genes retained in duplicate along
that branch (purple, fig. 2A) and those genes either returned
to single copy along that branch, or already in single copy
(blue, fig. 2A). Immediately after WGD, the retained dupli-
cates begin to become enriched for genes whose products
possess more protein interactions, although this trend is only
statistically significant for the shared branch immediately
after the split of Vanderwaltozyma polysporus,
Tetrapisispora phaffii, and T. blattae from the other nine spe-
cies (Branch “B,” P = 0.02 after a false-discovery rate, or FDR,
correction on all branches, supplementary table S1,
Supplementary Material online; Benjamini and Hochberg
1995). Later, the enrichment for protein interactions among
the surviving duplicates is lost (Branches C-G, P 4 0.05, FDR
correction). One might believe this latter trend is due to
subfunctionalization among surviving duplicates, but in fact
omitting all of the surviving WGD duplicate pairs from the
analysis actually indicates a significant trend in overretention
on a later branch as well (Branches B and C; P = 0.015, FDR vs.
branches D-G; P 4 0.05, FDR, supplementary table S1,
Supplementary Material online). This trend can be seen visu-
ally in the “outward-in” pattern of duplicate loss in the extant
yeast protein interaction network (e.g., taking the modern
S. cerevisiae network topology and indicating whether or
not each node had a surviving WGD-produced paralog at
various times, fig. 2C). For that network, proteins at the pe-
riphery lost their encoded duplicate genes soon after WGD,
whereas duplicate genes encoding more highly interacting
proteins survived longer.

The preservation pattern differs in two regulatory net-
works. For the bakers’ yeast’s transcriptional regulatory net-
work (Harbison et al. 2004) and its phosphoregulatory
network (Ptacek et al. 2005), there is no association between
the number of genes a modern transcription factor (TF) reg-
ulates or products a kinase phosphorylates and its propensity
to remain duplicated (P 4 0.05 for all branches in fig. 2B).
However, a gene’s role as a transcription factor or kinase is
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very relevant for its survival in duplicate post-WGD: Both
classes are overrepresented among surviving duplicates
along all branches except A for the transcription factors
(fig. 3D) or A and S for the kinases (!2 test, P" 0.01; FDR
for all comparisons). Moreover, a gene’s status as a target of
one or more transcription factors has a strong influence on
retention (fig. 3A): The more extant S. cerevisiae transcription
factors that regulate a gene, the longer that gene is likely to
have remained duplicated (fig. 3A, e.g., branches B-G in fig. 3B,
P" 0.017; FDR). The pattern of figure 3A is visually slightly
unusual: It might appear surprising that both the duplicate
and single-copy genes increase in their number of regulators
moving toward the present. The reason is that initially there
were many more duplicates of varying number of regulators,

with only the least regulated genes having returned to single
copy. As the number of duplicates fell, their average number
of targets increased, while at the same time an increasing
percentage of the genes with more regulators were also re-
turned to single copy. The same visual pattern is seen for a
gene’s status as the target of a kinase, although it is not sta-
tistically significant in most cases (supplementary fig. S1 and
table S2, Supplementary Material online, P# 0.046, FDR).

We previously described a similar pattern of long-term and
differential overretention of enzymes catalyzing high flux re-
actions (e.g., biochemical reactions that have many metabo-
lite turnovers per second in the cell), though without
analyzing its significance (Mayfield-Jones et al. 2013).
I repeated that analysis with the larger set of post-WGD
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FIG. 1. Orthology prediction and estimation of duplicate losses post-WGD from POInT for a small region of the 12 genomes considered. WGD
produced two duplicated regions in each taxa (top and bottom panels and phylogenies): I have ordered them using Gordon et al.’s ancestral order
(2009). POInT then estimates the orthology ordering of these 2n chromosomal regions that gives the highest likelihood. The probability of this orthology
arrangement is given above each column. Blue columns indicate that the corresponding single-copy genes in the 12 genomes are inferred to be
orthologous, whereas magenta columns indicate genes where some taxa have single-copy genes that are paralogs of their corresponding single-copy
genes in another genome. Thus MON2 from Saccharomyces cerevisiae and 1020.19 from V. polysporus are paralogs, although MON2 is an ortholog of
gene 14.35 from S. mikatae. Green columns indicate the preservation of a WGD-produced duplicate.
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genomes considered here. There is a trend toward increasing
retention of genes encoding high-flux enzymes through time.
However, this trend is not universal: Only in the
Saccharomyces clade is the enrichment significant (blue
oval in fig. 3C, P = 0.026, FDR).

The second prediction of the dosage balance hypothesis is
that, when interacting genes are lost post-WGD, it should be
more likely that both members of an interaction pair are lost

contemporaneously (e.g., on the same branch of the phylog-
eny). I took the extant yeast protein interaction network and
removed all surviving WGD duplicate pairs. For the remaining
single-copy genes, I took each interacting pair and asked, for
each branch, the probability that both members of that in-
teraction pair were lost along that same branch. I then
summed this probability over the entire network. To assess
whether there were more such shared losses than would

FIG. 2. Resolution of the yeast WGD was driven by relative dosage constraints in its early phases. In (panel A), I show the mean number of protein
interactions (left axis) for the duplicated (purple) and single-copy (blue) genes at six time points after the WGD (Materials and Methods). Gray boxes
around pairs of points indicate no statistical difference between the mean number of PPIs for duplicates and single-copy genes after FDR correction
(Results). On the x axis is the relative proportion of duplicate losses at that point (branch lengths from the POInT model or "t, panel B). On the right
axis is the number of duplicates produced by WGD surviving to that point (pink). (Panel B) gives the relative degree of duplicate resolution for each of
these six points (all on the lineage leading to Saccharomyces cerevisiae) and shows the phylogenetic comparisons used to make the inferences. Branch
names are given below each branch: Above the branches are POInT’s estimates of the number of duplicate loci returned to single copy along that
branch. Branches shown in red indicate a statistical excess of shared losses of both members of a PPI pair (Materials and Methods). Because branch
lengths are proportional to the probability of a loss along each branch, more recent branches have fewer total losses because most genes were already
single copy at that point. (Panel C) shows my reconstruction of the copy-number condition of the extant yeast protein interaction network at four of
the six points in (A) (i.e., the network topology is fixed to the extant S. cerevisiae network, with nodes colored based on their inferred copy number). For
clarity, I have omitted all surviving duplicates from the WGD. Again, shortly after WGD, most modern single-copy genes were duplicated (purple): Over
time, losses started at the periphery of the network and moved inwards, producing single-copy genes (blue). Finally, (panel D) gives a diagrammatic
description of the likelihood model of post-WGD gene losses. All genes start in state U: They may then become fixed (F) at rate "# , lost (S1 and S2) at
rate " or move to a converging state (C1 and C2) at rate "$, after which only one type of loss is permitted (rate "%, see Materials and Methods).
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FIG. 3. Later phases of the yeast WGD saw duplicate gene preservation due to several forces. In (panel A), the mean number of transcription factors
regulating the duplicated (purple) and single-copy (blue) genes at each of six time points are shown (left axis). Note that these regulatory counts are
based on the extant Saccharomyces cerevisiae network and hence not adjusted for the instantaneous redundancy created by WGD. Gray boxes indicate
nonsignificant comparisons (P 4 0.05, FDR). The x axis and right axis are as for figure 2A. (Panel B) is as for figure 2. In (panel C) is the association
between maximal flux for each enzyme (estimated with flux-balance analysis) in the S. cerevisiae metabolic network and its propensity to remain
duplicated in each taxa (Materials and Methods). On the y axis is the mean difference in the log-transformed flux between the duplicated and single-
copy genes. Thus, a value of 0 (dashed line) indicates no difference, values greater than zero indicate that duplicated genes on average carry higher flux.
The blue oval indicates the cases where there is a significant difference between duplicated and single-copy genes (P = 0.026, FDR; Results). The x axis is
as in (A). (Panel D) confirms that transcription factors (dark purple) themselves were overretained in duplicate after the WGD throughout the S.
cerevisiae lineage relative to the remainder of the genome (light purple).
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expected by chance, I randomized the network 1,000 times
and recomputed this same shared loss statistic using the orig-
inal branch loss patterns but randomized networks (Materials
and Methods). For six of the earliest branches in the phylog-
eny, I observe more cases of shared loss than can be explained
by chance (red branches in fig. 2B, P" 0.015; FDR). No such
excess of shared losses is observed in regulatory networks
(P 4 0.05; FDR). Probably the fact that transcription factors
interact with the DNA coding for a gene rather than with the
gene product gives rise to this difference: I have previously
argued that a significant degree of transcriptional redundancy
survives among the duplicate TFs created by the WGD
(Conant 2010).

Figures 2 and 3 suggest that in the very earliest stages of the
WGD resolution, many of the trends just described were
either not yet established, or at a minimum, are not statisti-
cally detectable. Part of the reason is that relatively few losses
had occurred by this point: The model predicts that only
roughly 511 genes had returned to single copy by the split
between S. cerevisiae and V. polysporus (fig. 2B—the fractional
values indicate statistical uncertainty in when on the phylog-
eny each gene was lost). I thus selected the 903 genes from the
model with a probability 4 0.4 of having been lost along
branch A (Materials and Methods). Two of the eight most
common GO terms among this group were significantly
overrepresented compared with other genes: “mitochondrion
organization” and “DNA repair” (Materials and Methods;
P" 0.045, !2 tests with FDR correction).

Clearly, several factors are predictive of duplicate loss.
However, these factors themselves might be related. For in-
stance, transcriptional factors often have multiple protein
interactions: Is it the function of transcriptional regulation
or the number of interactions that drives retention? For
each branch in figure 2B, I asked what was the R2 of the
association between the ratio of the probability of returning
to single copy (PDUPL!SING) and the probability of having
remained duplicated (PDUPL) along that branch and its 1)
protein interaction degree, 2) metabolic flux, and 3)
number of transcriptional regulators. These R2 values are gen-
erally not high, but given the complex distributions of these
variables, that fact is not unexpected (supplementary table S3,
Supplementary Material online). What is more striking is that
the relative order of the ranked R2 values changes over time:
On early branches, PPI degree is the best predictor of loss
probability, while for most extant branches metabolic flux
dominates.

Discussion
Analyses of the temporal pattern of duplicate gene losses
identify at least three phases of WGD resolution. There are
multiple lines of evidence for this conclusion: Figures 2 and 3
strongly suggest that the dosage-based trends were not fully
established by the first speciation event (neither overreten-
tion of highly interacting genes nor of transcription factors is
statistically distinguishable by this point). Similarly, the overre-
tention of highly interacting genes and the shared losses of
interacting partners (fig. 2B) were clearly transient and are not
observable in the modern S. cerevisiae genome. Likewise,

selection on enzymatic flux does not become statistically sig-
nificant until after dosage-based selection on interaction
degree is no longer detectable. Finally, our correlation analyses
of the various factors’ association with loss rates also support
differential timing in these patterns.

So what are these three phases? First, there was a group of
early gene losses. Although these were few in number, they
included genes involved in mitochondrial organization. The
analysis of GO terms indicates that the early losses are distinct
from later losses: Certainly the terms mitochondrion organi-
zation and DNA repair are both strongly underrepresented
among the surviving WGD duplicates in S. cerevisiae
(P< 10!10, !2 test). It has previously been suggested (Edger
and Pires 2009) that genes whose products are targeted to the
organelles experience different dosage constraints post-WGD
than other genes, as organellar genomes are not altered by
WGD. It is therefore gratifying to detect this early trend to-
ward a return to “normal” organellar dosage. Our results are
also consistent with those of De Smet et al. (2013), who found
that genes involved in organellar processes and DNA damage
repair were single copy in many plant genomes, despite the
genomes in question having undergone many nested WGD
events.

In the second phase of resolution, maintenance of relative
dosage was clearly key, as indicated by both the overretention
of genes for interacting proteins and the subsequent shared
losses of these interactors. However, selection to maintain
dosage becomes less evident as time progresses (fig. 2A and
B). Instead, as we previously argued for plants (Bekaert et al.
2011), the species eventually entered a final resolution phase
where a smaller group of retained duplicates began to alter
the organisms’ phenotypes. Of course, it may be that the
maintenance of duplicates that initially occurred due to rea-
sons of dosage then allowed for subsequent functional
changes (Hittinger and Carroll 2007; Komili et al. 2007; Kim
et al. 2009; Evangelisti and Conant 2010; Fusco et al. 2010),
including further evidence for the importance of WGD in
reshaping metabolism in bakers’ yeast (Blank et al. 2005;
Conant and Wolfe 2007; Merico et al. 2007; van Hoek and
Hogeweg 2009). One might also speculate that genes such as
transcription factors, while retained initially due to relative
dosage, are particularly prone to subfunctionalization,
accounting for their longer survival (Birchler and Veitia
2012). On the other hand, there are clear cases of post-
WGD neofunctionalization as well (Conant et al. 2014).

Of course, the notion of “phases” is an oversimplification:
Dosage constraints will not suddenly cease to act at a certain
point in time, nor will all the duplicate pairs have responded
to the same selection pressures or be expected to have the
same fate should a subsequent WGD occur (Conant et al.
2014). Instead, I prefer to think of the three phases as describ-
ing what one might think of as the main force acting at
different points in time after WGD. Similarly, my analyses
only consider the set of approximately 4,500 genes identified
in syntenic positions in all 12 yeast genomes (Gordon et al.
2009)—it is at least possible that the faster-evolving genes
that do not show sufficient synteny and sequence conserva-
tion to be placed in this framework might show different
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patterns. One final caveat is that it would be preferable to
actually reconstruct the ancestral regulatory and protein in-
teraction networks for these species rather than using the
extant networks from S. cerevisiae. Unfortunately, we com-
pletely lack the sort of large-scale comparative data necessary
to do so: The state of the art in this area is the comparison of
the interaction patterns of a handful of proteins across species
(Qian et al. 2011). However, here I have considered the ag-
gregate network properties of each gene—a protein’s inter-
action degree or a transcription factor’s number of targets will
be much more slowly evolving than is any particular
interaction.

The complex temporal dynamics of post-WGD evolution
help illuminate some of the mysteries and controversies sur-
rounding polyploidy evolution. For instance, there is some
danger in naively comparing WGD events of different ages,
because they may have very different retention patterns (e.g.,
an overabundance of genes with high interaction degree early
on vs. no such overabundance later). It may be similarly dan-
gerous to make claims about whether particular features are
important in WGD resolution when considering only extant
genomes: The role of protein interactions in retaining dupli-
cates would not be detected in the extant S. cerevisiae
genome (Zhu et al. 2013).

More generally, if we accept the power of polyploidy for
innovation (Fawcett et al. 2009), it is surprising that it may be
followed by a reduction in speciation rates (Mayrose et al.
2011). These potentially conflicting facts have reconciled by
the suggestion of a post-WGD speciation lag (Schranz et al.
2012): One source of this lag is the dosage-balance phase of
WGD resolution. It is possible that it is only after dosage has
been stabilized that the power of WGD becomes manifest
(Arrigo and Barker 2012). At that point there will be a set of
duplicates with functions especially suited as substrates of
innovation: They are more likely to be essential (Conant
and Wolfe 2008), have many epistatic constraints that can
be resolved by subfunctionalization (Scannell and Wolfe
2008) and are involved in critical regulatory and metabolic
functions (fig. 3). We should not dismiss the innovative po-
tential of WGD by focusing on its immediate effects—the
power of these events may well be felt many millions of
years after the initial doubling (Van de Peer et al. 2009;
Soltis and Soltis 2012).

Materials and Methods

Modeling Gene Loss Post-WGD
Our probabilistic model takes as input the chromosomal gene
orders from 12 extant genomes that all share a WGD (Goffeau
et al. 1996; Cliften et al. 2003; Dujon et al. 2004; Scannell et al.
2007; Gordon et al. 2011). POInT then orders these genes
relative to each other using an inferred ancestral order, pre-
sumed to reflect the gene order immediately before the
WGD. In yeast we are fortunate to have a high-quality esti-
mate of this gene order, provided by Gordon et al. (2009).

The model uses six states (fig. 2D) to describe the process
of post-WGD duplicate loss. U represents undifferentiated
duplicated genes that are free to be lost, state F represents

fixed duplicate genes and states S1 and S2 are the two single-
copy states. Finally, states C1 and C2 are “partisan” states
where even though a duplicate pair is retained at that
locus, the two duplicates have differentiated, such that for
C1 only copy 2 can be lost and hence only state S1 is reachable
and vice versa. Under this model, we can generate a set of
instantaneous transition rates among the six states:

R U! S1ð Þ ¼ "

R U! Fð Þ ¼ " ' #

R U! C1ð Þ ¼ " ' $

R C1 ! S1ð Þ ¼ " ' %

R C1 ! Fð Þ ¼ 0

ð1Þ

We then use standard techniques to compute the model’s
time-dependent substitution probabilities (Lewis 2001).

The resulting likelihood model is uniquely appropriate to
understanding post-WGD evolution for two reasons. First, it
makes the inference of the loss pattern part of the same
computation as inferences regarding the orthology of the
various single-copy genes in genomes sharing the WGD.
Figure 1 illustrates this problem: Pink columns are single-
copy genes that were differentially resolved: For example,
the V. polysporus homolog of S. cerevisiae gene MON2
(gene 1020.19) is actually a paralog created by the WGD
and not an ortholog from the more recent common ancestor
of S. cerevisiae and V. polysporus. We previously found that
only approximately 56% of shared, single-copy, genes in
S. cerevisiae and V. polysporus are orthologs (Scannell et al.
2007). To address this issue, the model considers the set of
2n!1 possible orthology relationships between the 2n differ-
ent loci (e.g., two duplicated loci in each of n genomes). We
sum over these 2n!1 combinations for each locus, accounting
for the potential uncertainty in whether a pair of single-copy
genes in two different genomes are paralogs or orthologs. As
this computation scales as 2n!1, I used OpenMP (Dagum and
Menon 1998) and the new Intel Phi coprocessor (Jeffers and
Reinders 2013) to parallelize and accelerate the computation.
Running times were between 3 and 13 days on one of these
devices.

Depending on the state of the 12 genomes, different
orthology assignments will be more or less probable: For a
shared single-copy gene, a single common loss will be more
likely than multiple independent losses. However, loci are not
treated as independent: Using the hidden-Markov approach
of Felsenstein and Churchill (1996), the likelihood of site i+1
having orthology state j given that site i has that orthology
assignment is (1-&), where & is a small constant estimated
from data (& = 0.002 for this analysis). In cases where there is a
break in gene order (e.g., a new contig or chromosome in an
extant genome with respect to two adjacent genes in the
ancestral order), & = 0.5.

The second advantage of POInT is that it places the losses
of duplicated genes onto a phylogeny, allowing the inference
of when each loss event occurred. This placement would not
be possible without the orthology assignments, because one
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can easily mistake the loss of alternative copies of a duplicate
pair in different lineages for a common loss. Using a likelihood
framework is also important, because homoplasy (the inde-
pendent loss of the same duplicated gene in two lineages) is
common, making parsimony-based inferences problematic.

Inferring Ancestral Duplication Status
Using the model, it is straight forward to infer probabilistic
estimates of the state of each duplicated locus at each internal
node of the tree: Effectively these values are simply the con-
ditional probabilities that form part of the tree-transversal
algorithm used to compute the tree likelihood (Felsenstein
1981). There are three cases that are relevant for these anal-
yses: The probability that a locus remained duplicated from
the start of the branch to the current node (PDUPL, combining
states U, F and C1 and C2 in fig. 2D), the probability that it
transitioned from duplicated to single-copy state
(PDUPL!SING, e.g., the gene entered state S1 or S2 from state
U, C1, or C2 along that branch) and the probability that it
started the branch in single-copy and remained as such (PSING,
e.g., the gene was in state S1 or S2 at the start of the branch).
These three probabilities necessarily sum to 1.0 for a given
locus and branch.

Network Data and Randomization
To assess the role of network position in shaping the patterns
of gene loss, I employed four different biological networks:

1) A protein interaction network from release 3.1.80 of
BioGRID (Stark et al. 2011),

2) Estimates of metabolic flux computed as previously de-
scribed (P"erez-Bercoff et al. 2011) for the metabolic net-
work of Duarte et al. (2004),

3) The transcriptional regulatory network of Harbison et al.
(2004) and

4) The phosphoregulatory network of Ptacek et al. (2005).

For each network, one can compute the various network
statistics (see Results), using the three probabilities above. For
instance, if a particular gene has PPI degree 2 and has
PDUPL = 0.5 and PDUPL!SING = 0.5, I added degree 2 to each
total with probability 0.5. As this description implies, I have
only considered each protein/transcription factor/kinase’s
modern behavior: I did not, for instance, correct for the po-
tential 4-fold redundancy in transcription factor binding in-
duced by the WGD. Instead, in the case of extant duplicates
from the WGD, I have taken the mean of the duplicates’
interaction degree or number of regulators. Although it
would be possible instead to correct for redundancy imme-
diately after the WGD, computing the decay rate of that
redundancy would be challenging. Using the modern net-
works at least allows me to distinguish between the duplicate
survival patterns for different network positions.

In order to assess if there were more shared losses than
expected of two members of a PPI pair, a transcription factor
and its target or a kinase and its target on a single branch, I
used our previously described network randomization ap-
proach. This approach exactly preserves the interaction

degree of all network nodes, whereas randomizing their in-
teraction partners (P"erez-Bercoff et al. 2011). This fact means
that the overretention patterns seen in figure 2A will not bias
this analysis. I then compared the number of shared losses
(shared cases of PDUPL!SING for both nodes) for the real ge-
nomes to that seen with the randomized networks.

Early WGD Losses and GO Term Analyses
I sought the set of genes lost along branch A in figure 2B.
No duplicates were inferred to have been lost along
branch A with greater than 47% confidence. The reason
for this low probability is that the model allows the early
transition of an ancestral locus to a converging state (C1

or C2 in fig. 2D). At that point, any later loss in any lineage
will remove the same copy. It is thus difficult to distin-
guish an early loss from an early entry into this converging
state. One might think that this problem could be over-
come by removing the requirement for these converging
states. However, doing so significantly reduces the quality
of the model fit to the data ($= 0 and %= 0 in fig. 2D,
P< 10!50, likelihood ratio test with 2 degrees of freedom).
I thus used the set of genes with a probability of loss along
branch A of 4 0.4 (Results).

I compared the frequency of the eight GO SLIM terms
from Saccharomyces Genome Database (Cherry et al. 1998)
that were common to more than 5% of these 903 genes to
the frequency of those same terms among the remaining
3,668 GO-annotated genes not predicted to have been lost
along branch A using a chi-square test with one degree of
freedom.

Correlation of Loss Probabilities and Network
Statistics
To compute the statistical association of the probability that
a gene was lost along a branch and various network statistics,
for every duplicated locus I computed the association be-
tween that statistic and the ratio PDUPL!SING/PDUPL. This
ratio only indicates the probability that a duplicate was lost
relative to the probability that it remained duplicated. In
many cases, both of these quantities will be small because
the most probable state for that locus along that branch is
having already returned to single copy (PSING). To account for
this issue, I used the weighted regression package in R
(R Development Core Team 2008), weighing each locus by
the probability that it was not in single copy (1.0-PSING).

Supplementary Material
Supplementary figure S1 and tables S1–S3 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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