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It has long been believed that cells organize their cytoplasm so as to efficiently channel

metabolites between sequential enzymes. This metabolic channeling has the potential to yield

higher metabolic fluxes as well as better regulatory control over metabolism. One mechanism for

achieving such channeling is to ensure that sequential enzymes in a pathway are physically close

to each other in the cell. We present evidence that indirect protein interactions between related

enzymes represent a global mechanism for achieving metabolic channeling; the intuition being

that protein interactions between enzymes and non-enzymatic mediator proteins are a powerful

means of physically associating enzymes in a modular fashion. By analyzing the metabolic and

protein–protein interactions networks of Escherichia coli, yeast and humans, we are able to show

that all three species have many more indirect protein interactions linking enzymes that share

metabolites than would be expected by chance. Moreover, these interactions are distributed

non-randomly in the metabolic network. Our analyses in yeast and E. coli show that reactions

possessing such interactions also show higher flux than do those lacking them. On the basis of

these observations, we suggest that an important role of protein interactions with mediator

proteins is to contribute to the spatial organization of the cell. This hypothesis is supported by

the fact that these mediator proteins are also enriched with annotations related to signal

transduction, a system where scaffolding proteins are known to limit cross-talk by controlling

spatial localization.

Introduction

Although the analogy between enzymes and machines is a
common one, it is rather more rare to note that an obvious
extension, that of pathways and assembly lines, is also appro-
priate. Nonetheless, the idea that enzymes physically associate
into complexes that reflect pathway structures is an old one.1–4

One of the primary advantages of these associations is likely to
be in facilitating metabolic channeling between sequential
enzymes. Metabolic channeling is the collective name for a
group of mechanisms that allow metabolites to move between
enzymes without being released into the bulk solvent,5 reducing
the degree to which pathway flux is diffusion-limited.6 One of
the earliest examples of channeling was found in the tryptophan
biosynthesis pathway, when Yanofsky and Rachmeler were
unable to detect one of the pathway’s necessary intermediates
in cell extracts.1 It was only after the two catalytic domains in
question were crystallized that an enclosed tunnel between the

two active sites was identified, accounting for the intermediate’s
apparent absence.7

More recently, it has become clear that macromolecular
complexes able to facilitate channeling are common and can
associate with specific cellular locations, such as the plasma
membrane or mitochondrion.8–11 Channeling is also widely
phylogenetically distributed, with known examples from
yeasts,9,12 plants,11,13,14 mammals3,8 and bacteria.2,7 One of the
important roles that these associations play is to partially isolate
particular metabolites, such as ATP, so that functional units,
such as myofibrils and ion pumps, respond to the local and not
the global concentration of that metabolite.15

Metabolic channeling is at least in part an emergent pro-
perty of two other cellular features: cells have very high protein
concentrations (macromolecular crowding)16 and are highly
spatially organized.17,18 Indeed, an elegant recent experiment
has shown that even when the plasma membrane has been
disrupted much of the cell’s protein machinery maintains its
organization and function rather than simply diffusing away.19

Cells use several mechanisms to spatially organize metabolism,
including protein localization by signaling peptides20 and
associations between enzymes and membranes.21 Another
potential mechanism for achieving subcellular organization is
protein–protein interactions, or PPIs.22 Here, we explore the

a Smurfit Institute of Genetics, University of Dublin, Trinity College,
Dublin 2, Ireland

bDivision of Animal Sciences, University of Missouri, Columbia MO,
USA. E-mail: conantg@missouri.edu

c Informatics Institute, University of Missouri, Columbia MO, USA

Molecular
BioSystems

Dynamic Article Links

www.rsc.org/molecularbiosystems PAPER

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f M

iss
ou

ri 
at

 C
ol

um
bi

a 
on

 3
1 

A
ug

us
t 2

01
1

Pu
bl

ish
ed

 o
n 

31
 A

ug
us

t 2
01

1 
on

 h
ttp

://
pu

bs
.rs

c.
or

g 
| d

oi
:1

0.
10

39
/C

1M
B0

51
68

G
View Online

http://dx.doi.org/10.1039/c1mb05168g
http://dx.doi.org/10.1039/c1mb05168g
http://dx.doi.org/10.1039/c1mb05168g


Mol. BioSyst. This journal is c The Royal Society of Chemistry 2011

role of PPIs in metabolism, dividing the interactions involved
into two types: direct and indirect.14 For each interaction type
we ask whether it is more common than expected among
related reactions in the metabolic network. Our work follows
that of Huthmacher and colleagues, who have argued for a
global excess of direct protein interactions (dPPIs) between pairs
of enzymes with shared metabolites,23 as well as a correlation in
enzyme-enzyme distance in the metabolic and protein inter-
action networks.24,25 Analyzing data from Escherichia coli,
bakers’ yeast and humans, we revisit the role of dPPIs in
structuring metabolism. We then introduce a role for indirect
protein interactions (iPPIs) that link pairs of enzymes through
nonenzymatic intermediate proteins.

Results

To study metabolic channeling in these three organisms,
we employed published metabolic and protein interaction
networks (Table 1),26–28 including two different human meta-
bolic networks, those of Ma et al., (Hs_M networks)29 and
Duarte et al., (Hs_D networks).30 We studied reaction-
centered metabolic networks, consisting of nodes that are
metabolic reactions.31 Two reactions are connected by an edge
if they share a metabolite (Fig. 1). Because there are a handful
of ubiquitous metabolites such as hydrogen ions and water, we
first counted the number of reactions each metabolite parti-
cipates in (n). We then excluded the most highly connected
metabolites from the network at five stringencies: n Z 10, 15,
25, 50, and 100. We have named the networks based on this
exclusion stringency. Thus the Hs_M_25 network is derived
from the human network of Ma et al., with metabolites
participating in 25 or more reactions excluded. Table 2 gives
selected network statistics for the twenty networks examined.
Except where noted, all of our conclusions hold across all five
exclusion stringencies and all three taxa.

Any two proteins that catalyze distinct reactions but none-
theless share both a metabolite and a protein–protein inter-
action are defined to possess a direct protein–protein-interaction
(dPPI). Huthmacher et al.,23 detected an excess of dPPIs in
yeast and E. coli compared to the number expected when
randomizing either the metabolic network or both the
metabolic and protein interaction networks. The authors
randomized the metabolic network by exchanging reaction
identities across the network and the protein interaction

network by creating new network edges under an assumed
probability distribution. Whether an excess of dPPIs was
observed depended on the randomization approach used.23

While network randomization appears to be the most
appropriate way to assess whether there are more dPPIs than
would be expected by chance, the exact method of construct-
ing the required random networks involves controlling for a
number of effects. We describe the issues associated with
previous analyses and the precise approach used here in
Appendix 1. Briefly, we kept the metabolic network unaltered
and compared it to 1000 randomized protein-interaction
networks in which the number of edges for each protein was
kept constant but the identity of those edges was randomized.
We then calculated the number of dPPIs found when compar-
ing the original metabolic network to each randomized PPI
network (Appendix 1). One important refinement that we
introduce to the randomization is the exclusion of intra-
reaction protein interactions.28,32 For example, in yeast, the
enzymes Bat1 and Bat2 are encoded by genes produced by the
yeast genome duplication.33 These two proteins both catalyze
the same two distinct reactions, namely the final steps of
isoleucine and valine production.34 They also interact with
each other according to the Database of Interacting Proteins
(DIP).35 A naı̈ve approach to identifying dPPIs would include
this interaction, an inclusion that we would dispute, since the
more parsimonious explanation is that the two proteins have
descended from a single self-interacting protein through the
genome duplication. To avoid these types of false signals, we
therefore did not allow PPIs joining proteins from the same
reaction to form part of a dPPI.
In E. coli, when we excluded metabolites involved in at

least 10 or at least 15 reactions, we find an excess of dPPIs
(Ec_10, Ec_15; P r 0.003; Table 2), but this enrichment is not
observed for the three larger cutoffs (Ec_25, Ec_50, Ec_100;
P 4 0.05). In yeast, there are not significantly more dPPIs
than would be expected in any of the five networks shown in
Table 2 (P 4 0.05). Finally, we observe a significant over-
abundance of dPPIs for all ten human networks in Table 2
(P o 0.001). Our conclusion of no dPPI enrichment in yeast
may differ from that of Huthmacher et al., because these
authors do not appear to have excluded intra-enzyme inter-
actions shared across multiple reactions (i.e., as in the
Bat1/Bat2 example cited). We cannot currently assess why
these three organisms show differing evidence of dPPIs.

Table 1 Statistics regarding the networks employed

Species
Metabolic network
reference # Rxnsa # Genesb

Avg. # genes
per rxnc

Avg. # rxns
per gened Proteinse

Non-self
interactionsf

Proteins in met.
networkg

Interactions
in met. networkh

E. coli 27 873 904 1.7 1.6 1862 7798 294 401
S. cerevisiae 28 810 743 1.7 1.8 4893 17 169 269 329
H. sapiens 29 887 2269 3.3 1.3 8876 32 916 827 1735
H. sapiens 30 2306 1475 1.9 2.9 8876 32 916 232 187

a Number of reactions in the metabolic network with annotated genes. b Number of genes annotated in the metabolic network. c The average
number of genes annotated per reaction. d The average number of distinct reactions a gene participates in. e Number of proteins with annotated
protein–protein interactions. f Total number of protein–protein interactions in the network involving distinct proteins (i.e., non-self interactions).
g Number of proteins from the protein interaction network also present in the corresponding metabolic network. Used in only the network
randomizations when analyzing dPPIs. h The number of distinct protein–protein interactions that involve proteins that are both present in the
metabolic network. Used in only the network randomizations when analyzing dPPIs.
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However, we do note that, of the three species, the set of
protein interactions inferred for yeast may be the least biased
by investigator choices, since many of these interactions were
identified with high-throughput approaches. Since protein
interactions from E. coli and humans are taken from literature
studies, a tendency among researchers to look for protein
interactions among members of the same pathways could
potentially give rise to a spurious indication of a general
abundance of dPPIs. Given the ambiguous evidence for dPPIs
and the relatively small number of them seen (Table 2), we
have also explored the potential for more complex protein
interactions that may facilitate channeling.

Indirect interactions between neighboring enzymes

Proteins not themselves part of the metabolic network might
also act as mediators between enzymes. Durek and Walther 25

have shown that non-metabolic proteins contribute to bring-
ing reactions with shared metabolites into closer proximity in
the protein interaction network. We extend this result by
searching for an overabundance of indirect PPIs (iPPIs), where

a pair of PPIs to a third non-metabolic protein join two
enzymes sharing a metabolite (Fig. 1).
For each metabolic network, we determined m: the number

of unique interactions between two enzymes and their mediator
protein (the number of unique iPPIs). We then created 1000
randomized protein-interaction networks as described above
and calculatedms: the number of unique iPPIs in each random-
ized network. We then compared the distribution of ms to the
value ofm. For example, in the Sc_50 network,m= 504, while
the largest value of ms observed was 253. Indeed, for none of
the fifteen eukaryotic networks did we find any values of ms as
large as the respective values of m (P o 0.001, Table 3).
Moreover, because the yeast protein interaction data derive
from different types of high-throughput experiments, we can
show that our results in yeast are robust to the method of
protein interaction detection (Methods). In E. coli the situation
is slightly more complex, as significant iPPI enrichment was
observed only for the two most stringent thresholds for
currency metabolite exclusion (P r 0.001; Ec_10 and Ec_15,
Table 3). Given that an iPPI implies physical proximity
between its three members, we conclude that iPPI enrichment

Fig. 1 Indirect protein–protein interactions provide structure to the yeast metabolic network. (A) The central component of the yeast

metabolic network described by Duarte and colleagues is shown.28 Metabolites involved in more than 25 reactions are omitted (Sc_25).

Nodes (blue) are reactions, joined by three types of edges. Thin grey lines indicate two reactions that share a common metabolite or

metabolites. Light green lines indicate a direct PPI (dPPI) between at least two of the constituent enzyme proteins of a pair of reactions. Pink

lines represent an indirect PPI (iPPI; meaning that there is a third, nonmetabolic, protein that both enzymes interact with). (B) An enlarged view of

a small part of the network, consisting of three enzymes involved in central carbon metabolism. Pyruvate decarboxylase and alcohol

dehydrogenase are sequential steps in ethanol fermentation, and isozymes for these two reactions are joined by a total of seven indirect PPIs.

Pyruvate decarboxylase and pyruvate carboxylase represent branch points in pyruvate metabolism. Note that the Yck1 protein actually joins all

three reactions, although the link joining pyruvate carboxylase and alcohol dehydrogenase is not shown in A since these two reactions do not share

a common metabolite.
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will drive physical associations between related enzymes in a
nonrandom fashion.
If the functional role of iPPIs is to physically associate

metabolic enzymes, we would expect that their distribution
in that network would be non-random. A consequence of our
definition of iPPIs is that they represent a subset of the edges in
their respective metabolic networks. We thus asked if the
metabolic edges possessing iPPIs were unusual by examining
the number of network components those iPPI-possessing
edges define. We compared this number to the number of
components observed when the same number of metabolic
edges were selected at random. (Note that, as with our
previous analysis, this randomization was performed only on
the set of metabolic nodes with annotated genes, Methods). In
all 17 real networks for which we identified iPPI enrichment,
the number of components seen was greater than that seen for
any randomly selected sets of edges (P o 0.001, Fig. 2).
Further analyses suggested that the primary driver of this
phenomenon was that a limited number of reactions possess
iPPIs, meaning that the iPPI-induced metabolic networks had
many more isolated nodes than did random ones (P o 0.001).

Analysis of yeast pathways for dPPIs and iPPIs

To explore whether the patterns we observed also existed at the
level of metabolic pathways, we obtained a set of 183 metabolic
pathways from the Saccharomyces Genome Database.36 Using
a similar network approach, we asked whether there was an
excess of dPPIs and iPPIs between members of the same
metabolic pathway (Methods). For both dPPIs and iPPIs,

Table 2 Metabolic network structure and dPPI prevalence. Selected statistics regarding the twenty metabolic networks used are given. dPPIs are
defined as shared protein interactions between two enzymes that also share a metabolite

Network Edgesa Path lengthb Clust. Coeff.c ld Average ls
e Maximum ls

f Pg

Ec_10 2225 7.7 0.65 13 4.4 16 0.003
Ec_15 3168 5.3 0.63 15 6.0 16 0.002
Ec_25 5006 4.3 0.64 20 13.5 27 0.052
Ec_50 8355 3.6 0.66 25 21.4 36 0.25
Ec_100 15 807 2.9 0.69 51 41.7 61 0.08
Sc_10 2004 7.1 0.66 6 4.2 11 0.23
Sc_15 2959 5.5 0.66 7 6.6 16 0.49
Sc_25 4375 5.0 0.67 7 7.6 18 40.5
Sc_50 8749 3.9 0.70 12 14.1 30 40.5
Sc_100 19 196 2.8 0.73 33 29.3 47 0.27
Hs_D_10 4292 12.9 0.71 22 2.9 9 o0.001
Hs_D_15 6555 9.3 0.69 27 3.2 10 o0.001
Hs_D_25 11 018 8.0 0.68 30 4.7 14 o0.001
Hs_D_50 22 844 5.4 0.74 34 5.9 20 o0.001
Hs_D_100 44 642 4.2 0.76 38 8.6 20 o0.001
Hs_M_10 2726 4.5 0.71 174 83.0 104 o0.001
Hs_M_15 3797 3.9 0.70 431 238.3 273 o0.001
Hs_M_25 5139 3.5 0.69 435 241.5 292 o0.001
Hs_M_50 7962 3.2 0.70 448 244.4 281 o0.001
Hs_M_100 16 213 2.7 0.73 459 250.8 286 o0.001

a Number of edges in the undirected metabolic network considering only reactions with annotated genes. b Average minimum path length:
the average over all nodes of the average for each node of the minimum number of edges needing to be traversed to reach any other
node, calculated with Dijkstra’s algorithm.60 c Clustering coefficient of each network.61 d Number of unique dPPIs, i.e., unique
interactions between two enzymes, in the actual metabolic network. e Average number of unique dPPIs seen in 1000 randomizations of
the protein interaction network. f Maximal number of unique dPPIs observed in any of the 1000 randomizations. g P-value for the test of
the hypothesis that there are no more dPPIs than would be expected given the respective structures of the two networks. Non-significant tests are
shown in bold.

Table 3 Real metabolic networks have many more iPPIs than do
randomized networks. iPPIs are defined as a shared protein interaction
between two enzymes that share a metabolite and a third mediator
protein. The number of such interactions in real metabolic networks is
much larger than can be explained by chance (m 4 ms)

Network ma Average ms
b Maximum ms

c Pd

Ec_10 157 109.4 156 o0.001
Ec_15 208 156.1 216 0.001
Ec_25 394 383.3 476 0.35
Ec_50 486 591.7 708 40.5
Ec_100 870 1236.6 1464 40.5
Sc_10 147 57.5 88 o0.001
Sc_15 206 84.0 119 o0.001
Sc_25 259 99.8 141 o0.001
Sc_50 504 187.5 253 o0.001
Sc_100 2192 466.1 605 o0.001
Hs_D_10 352 62.9 96 o0.001
Hs_D_15 369 69.5 113 o0.001
Hs_D_25 386 73.2 109 o0.001
Hs_D_50 399 78.6 120 o0.001
Hs_D_100 444 90.5 126 o0.001
Hs_M_10 2776 879.5 1050 o0.001
Hs_M_15 6381 3277.8 3787 o0.001
Hs_M_25 6411 3315.2 3706 o0.001
Hs_M_50 6464 3356.4 3906 o0.001
Hs_M_100 6564 3464.8 3980 o0.001

a Number of unique iPPIs, i.e., unique interactions between two
enzymes and a mediator protein, in the actual metabolic network.
b Average number of unique iPPIs seen in 1000 randomizations of
the protein interaction network. c Maximal number of unique iPPIs
observed in any of the 1000 randomizations. d P-value for the test of
the hypothesis that there are no more iPPIs than would be expected
given the respective structures of the two networks. Non-significant
tests are shown in bold.
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we observe such an excess, with the number of dPPIs or iPPIs
in the actual network being at least 2.5 times greater than the
largest number seen in the randomized networks (P o 0.001).
Although the annotation status of these pathways introduces
some error into this analysis (Methods), it is encouraging that
the general trends are similar to those seen when analyzing
metabolic networks.

Functional annotation of mediator proteins

To understand the biological role of the mediator proteins
(pink gene names in Fig. 1B), we searched for Gene Ontology
(GO) terms enriched among the mediator proteins.37 To do so,
we used the largest eukaryotic networks because the other
networks contain subsets of the mediator genes in these
three. In all three cases (Sc_100, Hs_D_100 and Hs_M_100),
the most significantly enriched molecular function term was
‘‘protein binding’’ (Bonferroni-corrected P r 0.009 across
three hypothesis tests). In yeast, the most enriched biologi-
cal process term was ‘‘localization’’ (Bonferroni-corrected
P o 10!11), while in the Hs_D_100 and Hs_M_100 networks,
the most enriched terms were ‘‘signaling’’ and ‘‘regulation of
cellular process’’ respectively (Bonferroni-corrected Po 10!34

and P o 10!101). However, ‘‘localization’’ was also signi-
ficantly enriched in these datasets (Bonferroni-corrected
P o 10!17).

Next we asked whether the yeast mediator proteins were
more likely to be essential than the average gene. To do so,
we asked what proportion of the mediator protein genes from
the largest yeast network, Sc_100, were essential according to
the Munich Information Center for Protein Sequences
(MIPS).38 Of these genes, 26% were deemed essential, as
compared to 18% of the genome at large and of genes with
at least one protein interaction, both significant differences
(w2 tests, P o 0.01).

Association of iPPI presence and high metabolic flux

We hypothesized that the reactions possessing iPPIs might be
biased toward those carrying high flux, accounting for their
non-random distribution in the network. Durek and Walther
have shown that enzymes with high protein interaction degree

show high flux:25 we asked if this result could be partly
attributed to higher flux among enzymes with iPPIs. We thus
computed the maximal flux through each E. coli and yeast
reaction across several growth conditions using flux-balance
analysis (FBA; Methods).39 For both E. coli networks with
iPPI enrichment (Ec_10 and Ec_15), the mean flux through
reactions with an iPPI was at least 1.5-fold greater than that
through reactions without one (Wilcoxon rank sum tests,
Po 0.04). In yeast, no network showed a significant difference
between reactions with and without iPPIs. However, many of
the reactions in these networks show no flux in our FBA
analyses, either because the set of environment conditions
where that reaction is used was not tested or because the
biomass reaction used did not include that reaction’s contri-
bution (e.g., for micronutrients).40 The lack of these reactions
reduces the sample size and hence power of our flux analysis.
To partly compensate for this effect, we introduced a second
analysis where we asked whether the proportion of reactions
having both an iPPI and high flux was greater than would be
expected. We defined ‘‘high flux’’ according to a sliding
threshold t, measured relative to the flux through the biomass
reactions (Methods). Thus, when t = 1, a high flux reaction is
a reaction with at least the flux of the biomass reaction. For a
wide range of values of t (0r tr 128), all five yeast networks
show a greater proportion of reactions having both high flux
and an iPPI than would be expected (P o 0.05; Fig. 3A).
As Fig. 3A indicates, even for values of t where no significant
excess of high-flux reactions with iPPIs is observed (due to the
small number of total reactions with flux 4t), the proportion
of reactions having iPPIs that are high flux is always greater
than that of reactions without iPPIs. Because of the clear
difference in flux between reactions with and without iPPIs in
E. coli, no equivalent test was carried out in that species.
We also computationally limited the flux through each

reaction in the two metabolic networks and calculated the
resulting change in biomass flux. We defined the fitness effect
of this knockdown as the ratio of the knockdown to original
biomass flux (Methods). For Sc_15, Sc_25 and Sc_50, average
knockdown fitness is higher for those reactions associated with
an iPPI (P o 0.05; Fig. 3B). No significant difference was
observed in Sc_10, Sc_100, Ec_10 or Ec_15.

Fig. 2 Indirect protein–protein interactions (iPPIs) produce more distinct metabolic subnetworks than would be expected by chance. On the x-axis is

the number of components observed when a number of metabolic edges equal to the number of iPPIs is sampled at random from the metabolic

network. The y-axis gives the proportion of simulations having that number of components (1000 simulations). The arrows in each panel give

the number of network components produced in each metabolic network when only the metabolic edges corresponding to iPPIs are retained

(749, 422 and 736, respectively). For each species, we selected the network with the most liberal threshold that still showed an excess of iPPIs.

(A) The E. coli Ec_15 network. (B) The yeast Sc_100 network. (C) The human Hs_M_100 network.
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While it would be interesting to examine the metabolic
roles of the iPPIs in humans, the goal of maximal biomass
production used in yeast and E. coli is not an evolutionarily
meaningful objective function in humans, since rapid cell
division does not generally confer a fitness benefit in multi-
cellular species. Shlomi and colleagues41,42 have instead
provided some more computationally challenging methods
for analyzing the human metabolic network which may
provide interesting insights into this problem in the future.

Discussion

We offer several new observations supporting the contention
that protein interactions play a global role in spatially struc-
turing metabolism.23–25 First, were iPPIs simply a result of
noise in the protein interaction data, it would be difficult to
understand our observations that iPPIs involve a distinct
subset of the reactions in the metabolic network and involve
mediators that are more likely to be essential. Likewise, the
association between high flux reactions and the presence of
iPPIs suggests that the physical association of sequential
enzymes may be reserved for reactions that require elevated
flux. It is certainly the case that a number of existing examples
of channeling involve such reactions.2,3,8,9

More generally, the advantages of spatially structuring
cellular functions extend beyond simple increases in metabolic
efficiency. For instance, micro-compartmentalization may
help to sequester metabolic intermediates with undesirable
side effects.9,43 Likewise, in signal transduction, spatial
co-localization increases efficiency and minimizes cross-talk.44,45

In fact, there are scaffolding proteins responsible for maintaining
this co-localization,45 and it is thus intriguing that a number
of the mediator proteins here also have signaling annotations.

We speculate that similar scaffolding structures may be at work
in metabolism. Given these Gene Ontology results, however, it is
not yet clear how functionally specialized a given mediator
protein will be.
One obvious question is why we occasionally obtain differ-

ing results depending on the stringency of currency metabolite
removal. Thus, only Ec_10 and Ec_15 show significant iPPI
enrichment in E. coli. We note that excluding more potential
currency metabolites should reduce the number of spurious
associations between reactions because only reactions with
unique shared metabolites will be connected. Networks with
more stringent currency metabolite removal (Ec_10, Sc_10
etc.) should therefore give better sensitivity in detecting dPPIs
and iPPIs (at a cost of potentially excluding real iPPIs and a
concomitant loss of statistical power). Importantly, unlike
yeast and humans, E. coli lacks mitochondria, nuclei and
other membrane-bound compartments, facts reflected in the
respective metabolic networks. We hypothesize that currency
metabolite removal is therefore more important for this
organism, since spurious associations between reactions that
would be removed by compartmentalization in eukaryotes
(where, for instance, ATP in the cytoplasm is distinguished
from that in the mitochondria) are not eliminated in the
prokaryotic network. A similar tradeoff between statistical
power and sensitivity probably explains why significant
associations between iPPIs and knockdown effects are seen
only for Sc_15, Sc_25, and Sc_50.
Our observations may also provide insights on other bio-

logical phenomena. For instance, the relative scaling between
metabolic rate and body size is surprisingly similar across
groups of related organisms and organ systems; a result that
appears to be due to the fractal branching patterns of the
transport networks involved.46 It has recently been suggested
that this scaling might also extend to the subcellular level.47

If so, similar hierarchical structures within the cell, such as
those implied above,5,17,43 might be one source of that scaling.
Likewise, the associations of iPPIs with high flux reactions
also reaffirms the modular nature of the metabolic network,48

with groups of enzymes working in functional isolation from
each other. It is of course terribly tempting to employ the
network structures of Fig. 1 to infer this set of metabolic
assembly lines. However, such an effort is likely premature,
given the incomplete nature of the protein interaction data.49,50

Nonetheless, there is certainly more information embedded
in the protein interaction and metabolic networks than has
been analyzed here. We suggest that the addition of protein
abundance data might help infer the stoichiometry of the
metabolic clusters relative to other parts of the cellular sub-
structure, and we speculate that this organization might show
fractal patterns.51

Methods

Protein interaction data

Statistics on the protein interaction networks used and their
overlap with the metabolic networks are given in Table 1.
Data on human protein–protein interactions (PPIs) was
obtained from the Human Protein Reference Database (HPRD)

Fig. 3 Reactions with iPPIs have higher flux and weaker knockdown

effects. (A)Reactions with iPPIs represent a greater proportion of high

flux reactions than expected. On the x-axis is the threshold used to

define high flux (t). On the y-axis is the proportion of reactions either

having (grey) or lacking (black) iPPIs that have flux of at least t. Open

symbols indicate comparisons where the difference in proportion

between the reactions with and without iPPIs is not statistically

significant (P 4 0.05). (B) Reactions with iPPIs have smaller knock-

down effects than other reactions. On the x-axis is our measure of

relative knockdown fitness: the ratio of biomass flux when a reaction is

limited to one half its optimal flux to ‘‘wild-type’’ flux. On the y-axis is

the cumulative proportion of reactions with relative knockdown

fitness r x for reactions that have (grey) or lack (black) iPPIs.

Both panels show results from Sc_50, but other yeast networks are

qualitatively similar.
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release 752,53 and matched against Ensembl release 50,54 as
previously described.55 Yeast and E. coli protein interaction data
were obtained from the Database of Interacting Proteins (DIP).35

Gene and protein identifiers used

Uniprot identifiers taken from the DIP database35 were mapped
to gene identifiers from the E. coli genome and metabolic
network27,56 using custom Perl scripts that queried the EBI
uniprot database (http://www.ebi.ac.uk/Tools/dbfetch/). Yeast
gene and protein identifiers were presented in standard format
both by DIP35 and the metabolic network,28 such that no
identifier mapping was required. Human protein identifiers from
both the protein interaction52,53 and the metabolic networks29,30

were mapped to Ensembl identifiers as previously described.55,57

Mapping of metabolic and protein interaction networks

All three metabolic networks used are provided with gene
identifiers for reactions with known enzymes. For the purposes
of this study, any reaction without an annotated gene was
omitted from all analyses except the flux balance analysis. For
the remaining nodes, the proteins corresponding to said genes
were mapped to the proteins identified in the protein inter-
action network using Perl. Table 1 gives the resulting statistics.

Robustness of iPPI enrichment to method of PPI detection

We repeated our analysis of the yeast metabolic network
excluding all interactions determined by mass spectrometry
and including only interactions obtained from yeast two-
hybrid experiments. In neither case did we observe a value
of ms in the randomized networks as large as m in any of the
five yeast networks (P o 0.001).

Pathway analysis

From the Saccharomyces Genome Database (SGD),36 we
downloaded pathway annotations for 531 yeast metabolic
genes (a total of 181 pathways). We defined a network such
that pairs of genes in the same pathway were joined by an
edge. We then counted all instances where two genes in the
same pathway shared a protein–protein interaction (i.e., a
dPPI) or shared an interaction to a nonmetabolic protein
(i.e., an iPPI). Cases where two genes were annotated as being
involved in the same reaction by SGD were not counted
toward the total of dPPIs and iPPIs. In other words, intra-
reaction/intra-enzyme protein interactions were excluded.
Using the network randomization approach of Appendix 1,
we asked whether the same number of dPPIs and iPPIs could
be expected by chance. In neither case did the randomized
networks show as many dPPIs or iPPIs as observed in the real
network (Po 0.001). However, we note that, especially for the
dPPIs, the pathways used are somewhat imperfect, since a
gene may be annotated into a pathway without a correspond-
ing reaction annotation (meaning that we could again mistake
an intra-enzyme protein interaction for a dPPI).

GO analyses

Gene ontology (GO) analyses for eukaryotic iPPIs were con-
ducted as described by Boyle et al.37 using the website http://
go.princeton.edu/cgi-bin/GOTermFinder.

Flux balance analysis

Flux balance analysis (FBA) is a common technique for
bounding the space of potential metabolic fluxes using
reaction stoichiometry and input metabolic constraints.39

Briefly, the approach uses linear programming to bound the
solution space of a system of homogenous linear equations
such that a defined biomass objective function is maximized.
Our custom software uses the GNU Linear programming
toolkit (http: //www.gnu.org/software/glpk/) to perform this
computation: we note that our results are numerically identical
to those produced by publically available FBA packages
(e.g., the Systems Biology Research Tool58). We thus inferred
the combination of reaction fluxes that yielded maximal
biomass production for the yeast and E. coli metabolic
networks used here.27,28 In yeast, we performed our analysis
under six sets of input nutrient conditions, including aerobic
growth with glucose, fructose, glycerol, ethanol and glutamine
as the primary carbon source and anaerobic growth with
glucose as the primary carbon source. In E. coli we used
growth on glucose under anaerobic and aerobic conditions.
(Software and data files available upon request.) For each
condition we normalized all fluxes to the overall biomass flux
under that condition. Finally, for each set of inputs, we also
computed the change in biomass flux that resulted from
individually constraining the flux through each reaction to
half of its maximal value (a computational knockdown). We
estimated knockdown fitness f as the ratio of the constrained
biomass flux to the unconstrained flux (Fig. 3).

Appendix 1 Comparison of metabolic and protein
interaction networks by randomization

In order to properly assess whether there is an excess of dPPIs
or iPPIs, there are several potential confounding factors that
any randomization approach needs to avoid:
1. Different proteins can have very different numbers of protein

interactions, and a randomization scheme that fails to preserve this
skew in the number of interaction partners might have unpredict-
able effects on the assessment of dPPI and iPPI excess.
2. One metabolic reaction might involve enzymes coded

for by multiple different genes, either as isoenzymes or
multi-enzyme complexes.
3. One enzyme may catalyze more than one reaction.
4. Points 2 and 3 may be confounded, such that one multi-

enzyme or isoenzyme complex can catalyze more than one
reaction (cf., the Bat1 and Bat2 enzymes in S. cerevisiae).34

5. It is desirable to preserve the interaction degree of the
enzymes of the metabolic network, something that one obvious
randomization scheme, that of randomizing the identities of
the proteins in the protein interaction network relative to the
metabolic network, fails to do.
We suggest that the randomization approaches used by

Huthmacher et al.,23 do not preserve interaction degree in
the protein interaction network, nor do they ensure that
the isoenzyme/enzyme complex structure in the metabolic
network is retained. We instead sought a randomization
approach that avoids all five of the issues listed in order to
provide a clear assessment of dPPI and iPPI enrichment.
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To do so, it is helpful first to more precisely define the
question being asked. First, take the existing metabolic net-
work M and an ensemble of protein interaction networks Pr

where, across the entire ensemble of Prs, each node has the
same degree as it does the real protein interaction network P.
We define VM as the edge set of M and VP as the edge set of
P such that x is the number of shared nodes betweenM and P.
The expected number of dPPIs between M and a random
network Pr is given by:

X

VM

PðVPr
i;j 2 VPr jVM

i;j 2 VMÞ ð1Þ

where i o x and j o x. In other words, given each edge i, j in
the metabolic network (VM

i, j), we ask what the probability is
that there is an equivalent edge in the ensemble of random

protein interaction networks (VPr
i;j ). When we take the sum

over the entire metabolic network of these probabilities, we get
the expected number of dPPIs. Obviously, we can calculate the
equivalent number for the real network P by replacing the
probabilities in (1) with an indicator variable that takes on
value 1 if a given edge exists and 0 otherwise.

However, for the random networks it is clear that:

PðVPr
i;j 2 VPr jVM

i;j 2 VMÞ ¼ PðVPr
i;j 2 VPrÞ ð2Þ

since the Pr networks do not depend on M. Thus, when we
compute (1) for all Pr and compare that distribution to the real
number of dPPIs, if we find that the real number of dPPIs falls
within range seen in the Prs, we cannot reject the conclusion
that (2) is true of the real network as well. In other words, in
that case our null hypothesis, that there are no more shared
edges (dPPIs) than would be expected given the structures of
M and P, cannot be rejected.

We have previously described a network rewiring procedure
for creating the Prs that exactly maintains the interaction
degrees of all nodes: only the interaction identities are
changed.59 This algorithm starts with an existing protein
interaction network with all self-interactions removed. Each
edge in the network is then broken, leaving a ‘‘stub’’ for each
of the two nodes it connects (thus there are 2VP such stubs,
2 per edge in the original network). To create a randomized
network, we use the following algorithm:

1. Select at random two stubs, A and B, to join.
2. If stub A is from the same protein as is stub B, goto 5
3. If we have already created an interaction A/B in a

previous step, goto 5
4. Goto 8
5. If A and B are the first stubs chosen, goto 1
6. Else, break a random existing interaction C/D created at

a previous step 8
7. For the pair A/C and for the pair B/D, goto 2
8. Create interaction A/B
9. Goto 1
The result of this algorithm is a randomized network where

each node has exactly the same number of edges as it did in the
original network: steps 2 and 3 of our procedure prevent
the randomization procedure from becoming trapped with a
partial network where all remaining potential interactions are
forbidden. In the worst case, the randomization procedure will

return the original network as the only possible network that
allows the observed set of node degrees (e.g., in the case of a
fully connected network). Thus, our approach is conservative
in the sense that a failure to randomize the PPI network would
result in our failure to reject the null hypothesis of no more
dPPIs or iPPIs than expected by chance.
Using this protocol to analyze the ten yeast and E. coli

networks shown in Table 2 leads us to infer an excess of
dPPIs (P o 0.05), similar to the results of Huthmacher and
colleagues.23,24 However, this approach has a flaw. The protein
interaction network contains many non-metabolic proteins.
By randomizing the entire network, we implicitly assume that
the random networks will have just as many protein inter-
actions between pairs of metabolic proteins as did the original
network. If however the fact that two proteins are both
enzymes increases the probability that they will share a protein
interaction (violating eqn (2) above), the randomized networks
will have fewer interactions between pairs of metabolic proteins
than did the original network, as is in fact observed for all three
taxa (Po 0.01). Since dPPIs can only exist for proteins that are
both members of the metabolic network, any tendency of the
randomized networks to have fewer such interactions will be
mistaken for evidence of more dPPIs in the real network. This
problem is easily overcome by limiting the randomizations to
interactions where both proteins are members of the metabolic
network. Importantly, if there were no bias in interactions
for metabolic proteins, this subset-based approach would be
equivalent to randomizing the entire network.

Conclusions

Our analyses suggest that one role for the cell’s protein
interactions is to define the appropriate spatial configuration
of metabolism. That this process involves indirect interactions
suggests that such structures might have a modular nature
(i.e., one localization protein can co-localize a number of
enzymes with similar roles).

Abbreviations used

PPI protein–protein interaction
dPPI direct protein–protein interaction
iPPI indirect protein–protein interaction
FBA flux-balance analysis
GO Gene Ontology
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18 J. Ovádi and P. A. Srere, Cell Biochem. Funct., 1996, 14, 249–258.
19 A. Hudder, L. Nathanson and M. P. Deutscher, Mol. Cell. Biol.,

2003, 23, 9318–9326.
20 P. Dolezal, V. Likic, J. Tachezy and T. Lithgow, Science, 2006,

313, 314–318.
21 R. A. Stuart, J. Bioenerg. Biomembr., 2008, 40, 411–417.
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